Higher Mode Vibration of Composite Stiffened Hypar Shell with Cut-Out for Varying Boundary Conditions and Ply Orientation

Puja Basu Chaudhuri *, Anirban Mitra**, Sarmila Sahoo***
*,***Department of Civil Engineering, Heritage Institute of Technology, Kolkata, India.
**Department of Mechanical Engineering, Jadavpur University, Kolkata, India.
Periodicity:June - August'2019
DOI : https://doi.org/10.26634/jste.8.2.14705

Abstract

Laminated composite shells are used as roofing units in Civil Engineering applications and hypar shells are most popular because of their ease of construction and aesthetic elegance. The aim of the present study is to analyse higher mode free vibration of composite hypar shells. The purpose is to obtain some design guidelines for the practising engineers dealing with such structures. The methodology adopted here is the finite element method based on first order shear deformation theory. Effect of cross curvature is included in the formulation. The isoparametric finite element consists of eight nodes with five degrees of freedom per node is considered. Three noded beam elements with four degrees of freedom per node are used for stiffeners. The generalised Eigen value solution is chosen for the un-damped free vibration analysis. The formulation is validated first by solving standard problems from literature and then new results are obtained for varying boundary conditions, ply orientation and curvature of the shell. The first five modes of natural frequency are presented. In general, it is observed that fundamental frequency increases with the increase in the number of support constraints. There are, however, few departures from this general tendency when two shells of different laminations are compared. Sometimes lamination order may influence the frequency of stiffened composite shell with cut-out more significantly than its boundary conditions. Symmetric lamination exhibits reasonably good performance and may be adopted for all practical purposes.

Keywords

Free Vibration, Laminated Composite, Stiffened Hypar Shell, Cut-out, Higher Mode.

How to Cite this Article?

Chaudhuri, P. B., Mitra, A., & Sahoo, S. (2019). Higher Mode Vibration of Composite Stiffened Hypar Shell with Cut-Out for Varying Boundary Conditions and Ply Orientation, i-manager's Journal on Structural Engineering, 8(2), 37-51. https://doi.org/10.26634/jste.8.2.14705

References

[1]. Bhargava, P. S. S., & Chakrabarti, A. (2012). Natural Frequencies and mode shape of laminated composite skew hypar shells with complicated boundary conditions using finite element method. Advanced Material Research, 585, 44-48. https://doi.org/10.4028/www. scientific.net/AMR.585.44
[2]. Chakravorty, D., Bandyopadhyay, J. N., & Sinha, P. K. (1995). Finite element free vibration analysis of point supported laminated composite cylindrical shells. Journal of Sound and Vibration, 181(1), 43-52. https://doi.org/10.1006/jsvi.1995.0124
[3]. Chakravorty, D., Sinha, P. K., & Bandyopadhyay, J. N. (1998). Applications of FEM on free and forced vibration of laminated shells. Journal of Engineering Mechanics, 124(1), 1-8. https://doi.org/10.1061/(A SCE)0733- 9399(1998)124:1(1)
[4]. Dey, A., Bandyopadhyay, J. N., & Sinha, P. K. (1992). Finite element analysis of laminated composite paraboloid of revolution shells. Computers & Structures, 44 (3), 675-682. https://doi.org/10.1016/0045-7949(92)90400-T
[5]. Dey, S., Mukhopadhyay, T., & Adhikari, S. (2015). Stochastic free vibration analyses of composite shallow doubly curved shells – A Kriging model approach. Composites Par t B: Engineering, 70, 99-112. https://doi.org/10.1016/j.compositesb.2014.10.043
[6]. GulshanTaj, M. N. A., & Chakraborty, A. (2013). Dynamic response of functionally graded skew shell panel. Latin American Journal of Solids and Structures, 10, 1243-1266. https://doi.org/10.1590/S1679- 78252013000600009
[7]. Kumar, A., Chakrabarti, A., & Bhargava, P. (2013). Vibration of laminated composite skew hypar shells using higher order theory. Thin-Walled Structures, 63, 82-90. https://doi.org/10.1016/j.tws.2012.09.007
[8]. Kumar, A., Chakrabarti, A., & Bhargava, P. (2015). Vibration analysis of laminated composite skew cylindrical shells using higher order shear deformation theory. Journal of Vibration and Control, 21(4), 725-735. https://doi.org/10.1177/1077546313492555
[9]. Liew, K. M., Kitipornchai, S., & Wang, C. M. (1993). Research developments in analyses of plates and shells. Journal of Constructional Steel Research, 26(2-3), 231- 248. https://doi.org/10.1016/0143-974X(93)90038-T
[10]. Liew, K. A., & Lim, C. A. (1994a). Vibratory characteristics of cantilevered rectangular shallow shells of variable thickness. AIAA Journal, 32(2), 387-396. https://doi.org/ 10.2514/3.59996
[11]. Liew, K. M., & Lim, C. W. (1994b). Vibration of perforated doubly-curved shallow shells with rounded corners. International Journal of Solids and Structures, 31(11), 1519-1536. https://doi.org/10.1016/0020- 7683(94)90012-4
[12]. Liew, K. M., & Lim, C. W. (1995a). A Ritz vibration analysis of doubly-curved rectangular shallow shells using a refined first-order theory. Computer Methods in Applied Mechanics and Engineering, 127(1-4), 145-162. https://doi.org/10.1016/0045-7825(95)00837-1
[13]. Liew, K. M., & Lim, C. W. (1995b). A Higher-order theory for vibration analysis of curvilinear thick shallow shells with constrained boundaries. Journal of Vibration and Control, 1(1), 15-39. https://doi.org/10.1177/1077 54639500 100103
[14]. Liew, K. M., & Lim, C. W. (1996). Vibratory characteristics of pretwisted cantilever trapezoids of unsymmetric laminates. AIAA Journal, 34(5), 1041-1050. https://doi.org/10.2514/3.13185
[15]. Liew, K. M., Lim, C. W., & Kitipornchai, S. (1997). Vibration of shallow shells: A review with bibliography. Applied Mechanics Reviews, 50(8), 431-444. https://doi.org/10.1115/1.3101731
[16]. Liew, K. M., Lim, C. W., & Ong, L. S. (1994a). Flexural vibration of doubly-tapered cylindrical shallow shells. International Journal of Mechanical Sciences, 36(6), 547- 565. https://doi.org/10.1016/0020-7403(94)90031-0
[17]. Liew, K. M., Lim, C. W., & Ong, L. S. (1994b). Vibration of pre-twisted shallow conical shells. International Journal of Solids and Structures, 31(18), 2463-2476. https://doi.org/10.1016/0020-7683(94)90031-0
[18]. Lim, C. W., & Liew, K. M. (1994). A pb-2 Ritz formulation for flexural vibration of shallow cylindrical shells of rectangular planform. Journal of Sound and Vibration, 173(3), 343-375. https://doi.org/10.1006/j svi.1994.1235
[19]. Lim, C. W., & Liew, K. M. (1995a). Vibration of pretwisted cantilever trapezoidal symmetric laminates. Acta Mechanica, 111(3-4), 193-208. https://doi.org/ 10.1007/ BF01376930
[20]. Lim, C. W., & Liew, K. M. (1995b). Vibratory behaviour of shallow conical shells by a global Ritz formulation. Engineering Structures, 17(1), 63-70. https://doi.org/10. 1016/0141-0296(95)91041-X
[21]. Mukherjee, A., & Mukhopadhyay, M. (1988). Finite element free vibration of eccentrically stiffened plates. Computers & Structures, 30 (6), 1303-1317. https://doi.org/10.1016/0045-7949(88)90195-2
[22]. Narita, Y., & Leissa, A. W. (1984). Vibrations of corner point supported shallow shells of rectangular planform. Earthquake Engineering & Structural Dynamics, 12(5), 651-661. https://doi.org/10.1002/eqe.4290120506
[23]. Nayak, A. N., & Bandyopadhyay, J. N. (2002a). Free vibration analysis and design aids of stiffened conoidal shells. Journal of Engineering Mechanics, 128(4), 419- 427. https://doi.org/10.1061/(ASCE)0733-9399(2002) 128:4(419)
[24]. Nayak, A. N., & Bandyopadhyay, J. N. (2002b). On the free vibration of stiffened shallow shells. Journal of Sound and Vibration, 255(2), 357-382. https://doi.org/ 10.1006/ jsvi.2001.4159
[25]. Nayak, A. N., & Bandyopadhyay, J. N. (2005). Free vibration analysis of laminated stiffened shells. Journal of Engineering Mechanics, 131(1), 100-105. https://doi.org/ 10.1061/(ASCE)0733-9399(2005)131:1(100)
[26]. Nayak, A. N., & Bandyopadhyay, J. N. (2006). Dynamic response analysis of stiffened conoidal shells. Journal of Sound and Vibration, 3(291), 1288-1297. https://doi.org/10.1016/j.jsv.2005.04.035
[27]. Pradyumna, S., & Bandyopadhyay, J. N. (2008). Static and free vibration analyses of laminated shells using a higher-order theory. Journal of Reinforced Plastics and Composites, 27(2), 167-186. https://doi.org/10.1177/07 31684407081385
[28]. Qatu, M. S., & Leissa, A. W. (1991a). Free vibrations of completely free doubly curved laminated composite shallow shells. Journal of Sound and Vibration, 151(1), 9- 29. https://doi.org/10.1016/0022-460X(91)90649-5
[29]. Qatu, M. S., & Leissa, A. W. (1991b). Natural frequencies for cantilevered doubly-curved laminated composite shallow shells. Composite Structures, 17(3), 227-255. https://doi.org/10.1016/0263-8223(91)90053-2
[30]. Qatu, M. S., & Leissa, A. W. (1991c). Vibration studies for laminated composite twisted cantilever plates. International Journal of Mechanical Sciences, 33(11), 927-940. https://doi.org/10.1016/0020-7403(91)90012-R
[31]. Reddy, J. N., & Chandrashekhara, K. (1985). Geometrically non-linear transient analysis of laminated, doubly curved shells. International Journal of Non-Linear Mechanics, 20(2), 79-90. https://doi.org/10.1016/0020- 7462(85)90002-2
[32]. Rikards, R., Chate, A., & Ozolinsh, O. (2001). Analysis for buckling and vibrations of composite stiffened shells and plates. Composite Structures, 51(4), 361-370. https://doi.org/10.1016/S0263-8223(00)00151-3
[33]. Sahoo, S. (2012). Behaviour and optimization aids of composite stiffened hypar shell roofs with cutout under free vibration. ISRN Civil Engineering, 2012, 1-14. https://doi.org/10.5402/2012/989785
[34]. Sahoo, S. (2013). Dynamic characters of stiffened composite conoidal shell roofs with cutouts: design aids and selection guidelines. Journal of Engineering, 2013, 18. https://doi.org/10.1155/2013/230120
[35]. Sahoo, S. (2014a). Free vibration of laminated composite stiffened saddle shell roofs with cut-outs. IOSR Journal of Mechanical and Civil Engineering, ICAET-2014, 30-34.
[36]. Sahoo, S. (2014b). Laminated composite stiffened shallow spherical panels with cutouts under free vibration–A finite element approach. Engineering Science and Technology, An International Journal, 17(4), 247-259. https://doi.org/10.1016/j.jestch.2014.07.002
[37]. Sahoo, S. (2015a). Free vibration behavior of laminated composite stiffened elliptic parabolic shell panel with cutout. Curved and Layered Structures, 2(1), 162-182. https://doi.org/10.1515/cls-2015-0009
[38]. Sahoo, S. (2015b). Laminated composite stiffened cylindrical shell panels with cutouts under free vibration. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 5(3), 37-63. https://10.4018/IJMMME.2015070103
[39]. Sahoo, S. (2016). Performance evaluation of free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cut-out. International Journal of Engineering and Technologies, 7, 1 - 2 4 . https://doi.org/10.18052/www.scipress.com/IJET.7.1
[40]. Sahoo, S. (2019). Characteristics of vibrating composite stiffened hypars with cut-out at different modes. Engineering Transactions, 67(1), 75-99. https://10.24423/EngTrans.946.20190214
[41]. Sahoo, S., & Chakravorty, D. (2005). Finite element vibration characteristics of composite hypar shallow shells with various edge supports. Modal Analysis, 11(10), 1291- 1309. https://doi.org/10.1177/1077546305057260
[42]. Sahoo, S., & Chakravorty, D. (2006). Stiffened composite hypar shell roofs under free vibration: Behaviour and optimization aids. Journal of Sound and Vibration, 295(1-2), 362-377. https://doi.org/10.1016 /j.jsv.2006.01.012
[43]. Schwarte, J. (1994). Vibrations of corner point supported rhombic hypar-shells. Journal of Sound and Vibration, 175(1), 105-114. https://doi.org/10.1006/ jsvi.1994.1314
[44]. Sivasubramonian B., Kulkarni A. M., & Rao G.V. (1997). Free vibration of curved panels with cut-outs. Journal of Sound and Vibration, 200(2), 227-234.
[45]. Srinivasa C.V., Suresh Y.J., & Prema Kumar W.P. (2014). Experimental and finite element studies on free vibration of cylindrical skew panels, International Journal of Advanced Structural Engineering, 6, 1.
[46]. Topal, U. (2006). Mode-frequency analysis of laminated spherical shell. In Proceedings of the 2006 IJME. INTERTECH International Conference-Session ENG P501-001, Kean University, NJ; 19-21 October 2006.
[47]. Tornabene F., Fantuzzi N., Bacciocchi M., & Dimitri R. (2015). Dynamic analysis of thick and thin elliptic shell structures made of laminated composite materials, Composite Structures, 133, 278-299.
[48]. Zhang, C., Jin, G., Ma, X., & Ye, T. (2016). Vibration analysis of circular cylindrical double-shell structures under general coupling and end boundary conditions, Applied Acoustics, 110, 176-193.

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.