References
[1]. Ahmed, N., & Sarmah, H. K. (2009). Thermal radiation effect on a transient MHD flow with mass transfer past an
impulsively fixed infinite vertical plate. Int. J. Appl. Math. Mech., 5(5), 87-98.
[2]. Bhattacharyya, K., & Layek, G. C. (2011). Effects of suction/blowing on steady boundary layer stagnation-point flow and
heat transfer towards a shrinking sheet with thermal radiation. International Journal of Heat and Mass Transfer, 54(1-3), 302-
307.
[3]. Dash, R. K., Mehta, K. N., & Jayaraman, G. (1996). Casson fluid flow in a pipe filled with a homogeneous porous
medium. International Journal of Engineering Science, 34(10), 1145-1156.
[4]. Jain, N. C., & Singh, H. (2012). Hall and thermal radiative effects on an unsteady rotating free convection slip flow along
a porous vertical moving plate. International Journal of Applied Mechanics and Engineering, 17(1), 53-70.
[5]. Kumar, B. R., Kumar, T. S., & Kumar, A. G. V. (2015). Thermal diffusion and radiation effects on unsteady free convection
flow in the presence of magnetic field fixed relative to the fluid or to the plate, Frontier in Heat and Mass Transfer, 6 (12), 1-9.
[6]. Kumar, V. R., Raj, M. C., Raju, G. S. S., & Varma, S. V. K. (2016). Thermal diffusive free convective radiating flow over an
impulsively started vertical porous plate in conducting field. Journal of Physical Mathematics, 7(1), 1-8.
[7]. Kumar, V. R., Raju, M. C, Raju, G. S. S Varma, S. V. K. (2013). Magnetic field effects on transient free convection flow
through porous medium past an impulsively started vertically plate with fluctuating temperature and mass diffusion,
International Journal of Mathematical Archive, 4(6), 198-206.
[8]. Mustafa, M., Hayat, T., Pop, I., & Aziz, A. (2011). Unsteady boundary layer flow of a Casson fluid due to an impulsively
started moving flat plate. Heat Transfer-Asian Research, 40(6), 563-576.
[9]. Oyelakin, I. S., Mondal, S., & Sibanda, P. (2016). Unsteady Casson non-fluid flow over a stretching sheet with thermal
radiation, convective, and slip boundary conditions. Alexandria Engineering Journal, 55(2), 1025-1035.
[10]. Prakash, J., Balamurugan, K. S., & Varma, S. V. (2014). Thermo-diffusion and chemical reaction effects on MHD three
dimensional free convective Couette flow. Walailak Journal of Science and Technology (WJST), 12(9), 805-830.
[11]. Raju, K. V. S., Reddy, T. S., Raju, M. C., Narayana, P. S., & Venkataramana, S. (2014). MHD convective flow through
porous medium in a horizontal channel with insulated and impermeable bottom wall in the presence of viscous dissipation
and Joule heating. Ain Shams Engineering Journal, 5(2), 543-551.
[12]. Raju, R. S., Reddy, G. J., Rao, J. A., & Rashidi, M. M. (2016). Thermal diffusion and diffusion thermo effects on an
unsteady heat and mass transfer magneto hydrodynamic natural convection Couette flow using FEM. Journal of
Computational Design and Engineering, 3(4), 349-362.
[13]. Raju, R. S., Sudhakar, K., & Rangamma, M. (2013). The effects of thermal radiation and Heat source on an unsteady
MHD free convection flow past an infinite vertical plate with thermal diffusion and diffusion thermo. Journal of The Institutionof Engineers (India): Series C, 94(2), 175-186.
[14]. Rashidi, M. M., Hayat, T., Erfani, E., Pour, S. M., & Hendi, A. A. (2011). Simultaneous effects of partial slip and thermaldiffusion
and diffusion-thermo on steady MHD convective flow due to a rotating disk. Communications in Nonlinear Science
and Numerical Simulation, 16(11), 4303-4317.
[15]. Ravikumar, V., Raju, M. C., & Raju, G. S. S. (2014). Combined effects of heat absorption and MHD on convective Rivlin-
Ericksen flow past a semi-infinite vertical porous plate with variable temperature and suction. Ain Shams Engineering
Journal, 5(3), 867-875.
[16]. Ravikumar, V., Raju, M. C., & Raju, G. S. S. (2015). Theoretical investigation of an unsteady MHD free convection heat
and mass transfer flow of a non-Newtonian fluid flow past a permeable moving vertical plate in the presence of thermal
diffusion and heat sink. In International Journal of Engineering Research in Africa (Vol. 16, pp. 90-109). Trans Tech
Publications.
[17]. Reddy, B. M. G. V., & Raju, M. C. (2015). Thermal diffusion and radiation effects on MHD convective chemically reactive
dusty fluid-flow past a vertical porous plate with heat absorption. Elixir Appl. Math. (Elixir International Journal), 88, 36320-
36327.
[18]. Reddy, N. A., Varma, S. V. K., & Raju, M. C. (2010). Thermo diffusion and chemical effects with simultaneous thermal
and mass diffusion in MHD mixed convection flow with ohmic heating. Journal of Naval Architecture and Marine
Engineering, 6(2), 84-93.
[19]. Reddy, G. J., Raju, R. S., Manideep, P., & Rao, J. O. (2016). Thermal diffusion thermo effects on unsteady MHD fluid flow
past a moving vertical plate embedded in porous medium in the presence of hall current and rotating system. Transaction
of A. Razmadze Mathematical Institute, 170(2), 243-265.
[20]. Seddeek, M. A. (2004). Thermal-diffusion and diffusion-thermo effects on mixed free-forced convective flow and mass
transfer over an accelerating surface with a heat source in the presence of suction and blowing in the case of variable
viscosity. Acta Mechanica, 172(1-2), 83-94.
[21]. Sharma, P. K. (2005). Fluctuating thermal and mass diffusion on unsteady free convection flow past a vertical plate in
slip-flow regime. Latin American Applied Research, 35(4), 313-319.
[22]. Shehzad, S. A., Hayat, T., Qasim, M., & Asghar, S. (2013). Effects of mass transfer on MHD flow of Casson fluid with
chemical reaction and suction. Brazilian Journal of Chemical Engineering, 30(1), 187-195.
[23]. Shivaiah. S. & Rao. J. A. (2012). On an unsteady MHD free convection flow past a vertical porous plate in the presence
of suction or injection. Theoret. Appl. Mech., 39, (2), 185-208.
[24]. Srinivas, S., Reddy, A. S., Ramamohan, T. R., & Shukla, A. K. (2016). Thermal-diffusion and diffusion-thermo effects on
MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation. Journal of the
Egyptian Mathematical Society, 24(1), 100-107.