References
[1]. Chandra, S., Mond B., & Smart, I. (1919). Constrained games and symmetric duality with pseudo- invexity. Opsearch
1919, 27(1), 14-30.
[2]. Charnes, A. (1953). Constrained games and linear programming. Proceedings of the National Academy of Sciences.
(Vol.39, No.7, pp.639-641).
[3]. Corley, H. W. (1976). Games with vector pay-offs. J. Opt. Theory Appl., 47, 491-498.
[4]. Cottle, R. W. (1963). An Infinite Game with a Convex-Concave Payoff Kernel.
[5]. Husain, I., & Ahmad, B. (2012). Constrained dynamic game and symmetric duality for variational problems. Journal of
Mathematics and System Science, 2, 171-176.
[6]. Husain, I., & Jain, V. K. (2013). Constrained vector-valued dynamic game and symmetric duality for multiobjective
variational problems. Open Operational Research Journal, 7, 1-10.
[7]. Kawaguchi, T., Maruyama, V. (1976). A note on mini-max (Max-min) programming. Manag Sci, 22, 670-676.
[8]. Khan, Z. A., & Hanson, M. A. (1997). On ratio invexity in mathematical programming. Journal of Mathematical Analysis
and Applications, 205(2), 330-336.
[9]. Mond, B., & Weir, T. (1981). Generalized concavity and duality. Generalized Concavity in Optimization and Economics,
263-279.
[10]. Mond, B., Chandra, S., & Prasad, M. V. D. (1987). Constrained games and symmetric duality. Opsearch, 24, 69-77.
[11]. Mond, B., Hanson, M. A. (1968). Symmetric duality for variational problems. J. Math. Anal. Appl., 23(1), 161-172.
[12]. Prasad, M. D., & Sreenivas, P. C. (1997). Vector valued non zero sum games and non linear programming. Opsearch,
34(3), 180-185.