References
[1]. Alauddin, M., El Baradie, M. A., & Hashmi, M. S. J. (1995). Computer-aided analysis of a surface-roughness model for end milling. Journal of Materials Processing Technology, 55(2), 123-127.
[2]. Bhuyan, R., & Routara, B. (2016). Optimization the machining parameters by using VIKOR and Entropy Weight method during EDM process of Al–18% SiCp Metal matrix composite. Decision Science Letters, 5(2), 269-282.
[3]. Chakraborty, S., Zavadskas, E. K., & Antucheviciene, J. (2015). Applications of WASPAS Method as a Multi-Criteria Decision-Making Tool. Economic Computation & Economic Cybernetics Studies & Research, 49(1), 5-22.
[4]. Kadirgama, K., Noor, M. M., & Rahman, M. M. (2008). Optimization of surface roughness in end milling on mould aluminium alloys (AA6061-T6) using response surface method and radian basis function network. Jordan Journal of Mechanical and Industrial Engineering, 2(4), 209- 214.
[5]. MacCrimmon, K. R. (1968). Decision making among multiple-attribute alternatives: A survey and consolidated approach (No. RM-4823-ARPA). Rand Corp Santa Monica CA.
[6]. Majumdar, G., Biswas, N., Pramanik, A., Sen, R. S., & Chakraborty, M. (2017). Optimization of mass deposition and surface roughness for ternary Ni-Cu-P electroless coating using VIKOR method. Advances in Materials and Processing Technologies, 3(2), 186-195.
[7]. Oktem, H., Erzurumlu, T., & Erzincanli, F. (2006). Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Materials & Design, 27(9), 735-744.
[8]. Ramesh, S., Viswanathan, R., & Ambika, S. (2016). Measurement and optimization of surface roughness and tool wear via grey relational analysis, TOPSIS and RSA techniques. Measurement, 78, 63-72.
[9]. Rao, R. V. (2010). Advanced Modeling and Optimization of Manufacturing Processes: International Research and Development. Springer Science & Business Media.
[10]. Rao, R. V., & Parnichkun, M. (2009). Flexible manufacturing system selection using a combinatorial mathematics-based decision-making method. International Journal of Production Research, 47(24), 6981-6998.
[11]. Rao, R. V., & Pawar, P. J. (2010). Parameter optimization of a multi-pass milling process using nontraditional optimization algorithms. Applied Soft Computing, 10(2), 445-456.
[12]. Saaty, R. W. (1987). The analytic hierarchy processwhat it is and how it is used. Mathematical Modelling, 9(3- 5), 161-176.
[13]. Singaravel, B., & Selvaraj, T. (2015). Optimization of machining parameters in turning operation using combined TOPSIS and AHP method. Tehnicki Vjesnik, 22(6), 1475-1480.
[14]. Yang, J. L., & Chen, J. C. (2001). A systematic approach for identifying optimum surface roughness performance in end-milling operations. Journal of Industrial Technology, 17(2), 1-8.
[15]. Yuvaraj, N., & Kumar, M. P. (2015). Multiresponse optimization of abrasive water jet cutting process parameters using TOPSIS approach. Materials and Manufacturing Processes, 30(7), 882-888.
[16]. Zain, A. M., Haron, H., & Sharif, S. (2010). Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Systems with Applications, 37(6), 4650-4659.
[17]. Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2015). Selecting a contractor by using a novel method for multiple attribute analysis: Weighted Aggregated Sum Product Assessment with grey values (WASPAS-G). Studies in Informatics and Control, 24(2), 141-150.
[18]. Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika,122(6), 3-6.
[19]. Zeleny, M. (1998). Multiple criteria decision making: Eight concepts of optimality. Human Systems Management, 17(2), 97-107.
[20]. Zhang, J. Z., Chen, J. C., & Kirby, E. D. (2007). Surface roughness optimization in an end-milling operation using the Taguchi design method. Journal of Materials Processing Technology, 184(1-3), 233-239.