References
[1]. Aburrous, M., Hossain, M. A., Thabatah, F., & Dahal, K.
(2008). Intelligent phishing website detection system using fuzzy techniques. In Information and Communication
Technologies: From Theory to Applications, 2008. ICTTA 2008.
rd 3 International Conference on (pp. 1-6). IEEE.
[2]. Aburrous, M., Hossain, M. A., Dahal, K., & Thabtah, F.
(2010). Predicting phishing websites using classification
mining techniques with experimental case studies. In
Information Technology: New Generations (ITNG), 2010
Seventh International Conference on (pp. 176-181). IEEE.
[3]. Afroz, S., & Greenstadt, R. (2011). Phishzoo: Detecting
phishing websites by looking at them. In Semantic
Computing (ICSC), 2011 Fifth IEEE International
Conference on (pp. 368-375). IEEE.
[4]. Ali, W. (2017). Phishing Website Detection based on
Supervised Machine Learning with Wrapper Features
Selection. International Journal of Advanced Computer
Science and Applications, 8(9), 72-78.
[5]. Basnet, R., Mukkamala, S., & Sung, A. H. (2008).
Detection of phishing attacks: A machine learning
approach. In Soft Computing Applications in Industry (pp.
373-383). Springer, Berlin, Heidelberg.
[6]. Blum, A., Wardman, B., Solorio, T., & Warner, G. (2010).
Lexical feature based phishing URL detection using online
rd learning. In Proceedings of the 3 ACM Workshop on
Artificial Intelligence and Security (pp. 54-60). ACM.
[7]. Dedakia, M., & Mistry, K. (2015). Phishing detection
using content based associative classification data
mining. Journal of Engineering Computers & Applied
Sciences (JECAS), 4(7), 209-214.
[8]. Fatt, J. C. S., & Chiew, K. L. (2014). Phishdentity:
Leverage Website Favicon to Offset Polymorphic Phishing
Website. In Availability, Reliability and Security (ARES),
2014 Ninth International Conference on (pp. 114-119).
IEEE.
[9]. James, J., Sandhya, L., & Thomas, C. (2013).
Detection of phishing URLs using machine learning
techniques. In Control Communication and Computing
(ICCC), 2013 International Conference on (pp. 304-309).
IEEE.
[10]. Jo, I., Jung, E., & Yeom, H. Y. (2010). You're not who
you claim to be: Website identity check for phishing
th detection. In 2010 Proceedings of 19 International Conference on Computer Communications and
Networks.
[11]. Kadam, A. S., & Pawar, S. S. (2013). Comparison of
association rule mining with pruning and adaptive
technique for classification of phishing dataset. Third
International Conference on Computational Intelligence
and Information Technology (CIIT 2013) 2013 (CP646),
61-67.
[12]. Kim, D., Achan, C., Baek, J., & Fisher, P. S. (2013).
Implementation of framework to identify potential
phishing websites. In Intelligence and Security Informatics
(ISI), 2013 IEEE International Conference on (pp. 268-
268). IEEE.
[13]. Layton, R., Brown, S., & Watters, P. (2009). Using
differencing to increase distinctiveness for phishing
website clustering. In Ubiquitous, Autonomic and Trusted
Computing, 2009. UIC-ATC'09. Symposia and Workshops
on (pp. 488-492). IEEE.
[14]. Naresh, U., VidyaSagar, U., & Reddy, C. V. M. (2013).
Intelligent phishing website detection and prevention
system by using link guard algorithm. Proc. IOSR, 14(3), 28-
36.
[15]. Nguyen, L. A. T., To, B. L., Nguyen, H. K., & Nguyen, M.
H. (2013). Detecting phishing websites: A heuristic URLbased
approach. In Advanced Technologies for
Communications (ATC), 2013 International Conference
on (pp. 597-602). IEEE.
[16]. Panchal, G., Ganatra, A., Kosta, Y. P., & Panchal, D.
(2011). Behaviour analysis of multilayer perceptrons with
multiple hidden neurons and hidden layers. International
Journal of Computer Theory and Engineering, 3(2), 332- 337.
[17]. Ramanathan, V., & Wechsler, H. (2012). Phishing
Website detection using latent Dirichlet allocation and
AdaBoost. In Intelligence and Security Informatics (ISI),
2012 IEEE International Conference on (pp. 102-107).
IEEE.
[18]. Shahriar, H., & Zulkernine, M. (2011). Information
source-based classification of automatic phishing
website detectors. In Applications and the Internet
th (SAINT), 2011 IEEE/IPSJ 11 International Symposium on
(pp. 190-195). IEEE.
[19]. Singh, P., Jain, N., & Maini, A. (2015). Investigating
the effect of feature selection and dimensionality
reduction on phishing website classification problem. In
Next Generation Computing Technologies (NGCT), 2015
st 1 International Conference on (pp. 388-393). IEEE.
[20]. Sonawane, J. S., & Patil, D. R. (2014). Prediction of
heart disease using multilayer perceptron neural network.
In Information Communication and Embedded Systems
(ICICES), 2014 International Conference on (pp. 1-6).
IEEE.
[21]. Tan, C. L., & Chiew, K. L. (2014). Phishing website
detection using URL-assisted brand name weighting
s y s t em. I n I n t e l l i g e n t S i g n a l Pro c e s s i n g a n d
Communication Systems (ISPACS), 2014 International
Symposium on (pp. 54-59). IEEE.
[22]. Zhuang, W., Jiang, Q., & Xiong, T. (2012). An
intelligent anti-phishing strategy model for phishing
website detection. In Distributed Computing Systems
n d Workshops (ICDCSW), 2012 32 International
Conference on (pp. 51-56). IEEE.