References
[1]. Alemani, M., Gialanella, S., Straffelini, G., Ciudin, R.,
Olofsson, U., Perricone, G., & Metinoz, I. (2017). Dry sliding
of a low steel friction material against cast iron at different
loads: Characterization of the friction layer and wear
debris. Wear, 376, 1450-1459.
[2]. Algan, I. B., & Kurt, A. (2017). The effect of metal fibres
and borax powders on the wear and friction performances
of the organic based brake pads. Metallofiz. Noveishic
Tekhnd., 39(11), 1511-1523.
[3]. Craciun, A. L., Pinca-Bretotean, C., Birtok-Baneasa, C.,
& Josan, A. (2017, May). Composites materials for friction
and braking application. In IOP Conference Series:
Materials Science and Engineering (Vol. 200, No. 1, p.
012009). IOP Publishing.
[4]. Djafri, M., Bouchetara, M., Busch, C., & Weber, S.
(2014). Effects of humidity and corrosion on the tribological
behaviour of the brake disc materials. Wear, 321, 8-15.
[5]. Eriksson, M., & Jacobson, S. (2000). Tribological
surfaces of organic brake pads. Tribology International,
33(12), 817-827.
[6]. Fan, S., Zhang, L., Cheng, L., Zhang, J., Yang, S., & Liu,
H. (2011). Wear mechanisms of the C/SiC brake materials.
Tribology International, 44(1), 25-28.
[7]. Ho, S. C., Lin, J. C., & Ju, C. P. (2005). Effect of fiber
addition on mechanical and tribological properties of a
copper/phenolic-based friction material. Wear, 258(5-6),
861-869.
[8]. Jang, H., Ko, K., Kim, S. J., Basch, R. H., & Fash, J. W.
(2004). The effect of metal fibers on the friction
performance of automotive brake friction materials. Wear,
256(3-4), 406-414.
[9]. Kchaou, M., Sellami, A., Elleuch, R., & Singh, H. (2013).
Friction characteristics of a brake friction material under
different braking conditions. Materials & Design (1980-
2015), 52, 533-540.
[10]. Kumar, M., & Bijwe, J. (2011). Non-asbestos organic
(NAO) friction composites: Role of copper; its shape and
amount. Wear, 270(3-4), 269-280.
[11]. Liew, K. W., & Nirmal, U. (2013). Frictional performance
evaluation of newly designed brake pad materials.
Materials & Design, 48, 25-33.
[12]. Mahale, V., Bijwe, J., & Sinha, S. (2017). Influence of
nano-potassium titanate particles on the performance of
NAO brake-pads. Wear, 376, 727-737.
[13]. Polajnar, M., Kalin, M., Thorbjornsson, I., Thorgrimsson,
J. T., Valle, N., & Botor-Probierz, A. (2017). Friction and wear
performance of functionally graded ductile iron for brake
pads. Wear, 382, 85-94.
[14]. Sharma, S., Bijwe, J., & Kumar, M. (2013). Comparison
between nano-and micro-sized copper particles as fillers in
NAO friction materials. Nanomaterials and Nanotechnology,
3, 12.
[15]. Singh, T., Patnaik, A., Gangil, B., & Chauhan, R.
(2015). Optimization of tribo-performance of brake friction
materials: Effect of nano filler. Wear, 324, 10-16.
[16]. Szlichting, M., Bielinski, D. M., Grams, J., & Pedzich, Z.
(2016). The influence of the kind of composite friction
material on morphology and composition of its surface
layer and tribological properties. Tribologia, 2, 121-144.
[17]. Verma, P. C., Ciudin, R., Bonfanti, A., Aswath, P.,
Straffelini, G., & Gialanella, S. (2016). Role of the friction
layer in the high-temperature pin-on-disc study of a brake
material. Wear, 346, 56-65.
[18]. Wang, F., Gu, K. K., Wang, W. J., Liu, Q. Y., & Zhu, M. H.
(2015). Study on braking tribological behaviors of brake shoe
material under the wet condition. Wear, 342, 262-269.
[19]. Xiao, X., Yin, Y., Bao, J., Lu, L., & Feng, X. (2016).
Review on the friction and wear of brake materials.
Advances in Mechanical Engineering, 8(5), 1-10.