References
[1]. Baumann, R. C. (2005). Radiation-induced soft errors in advanced semiconductor technologies. IEEE Transactions on Device and Materials Reliability, 5(3), 305-316.
[2]. D'Alessio, M., Ottavi, M., & Lombardi, F. (2014). Design of a nanometric CMOS memory cell for hardening to a single event with a multiple-node upset. IEEE Transactions on Device and Materials Reliability, 14(1), 127-132.
[3]. Fazeli, M., Patooghy, A., Miremadi, S. G., & Ejlali, A. (2007, June). Feedback redundancy: A power efficient SEU-tolerant latch design for deep sub-micron technologies. In Dependable Systems and Networks, 2007. DSN'07. 37th Annual IEEE/IFIP International Conference on (pp. 276-285). IEEE.
[4]. Garg, S., & Hashmi, M. S. (2017). Single Event Effect Hardened Cost Effective CMOS Circuits (Doctoral Dissertation, Indraprastha Institute of Information Technology).
[5]. Hui, X., & Yun, Z. (2015). Circuit and layout combination technique to enhance multiple nodes upset tolerance in latches. IEICE Electronics Express, 12(9), 1-7.
[6]. Kesharwani, S., & Dedhe, V. (2018). Radiation Immune Latch Design In CMOS Technology: A Review. i-managers Journal on Circuits and Systems, 6(2), 39-46.
[7]. Lin, S., Kim, Y. B., & Lombardi, F. (2011). Design and performance evaluation of radiation hardened latches for nanoscale CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(7), 1315-1319.
[8]. Mozaffari, S. N., & Afzali-Kusha, A. (2010, August). Statistical model for subthreshold current considering process variations. In Quality Electronic Design (ASQED), 2010 2nd Asia Symposium on (pp. 356-360). IEEE.
[9]. Nan, H., & Choi, K. (2012). High performance, low cost, and robust soft error tolerant latch designs for nanoscale CMOS technology. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(7), 1445-1457.
[10]. Omana;a, M., Rossi, D., & Metra, C. (2007). Latch susceptibility to transient faults and new hardening approach. IEEE Transactions on Computers, 56(9), 1255- 1268.
[11]. Qi, C., Xiao, L., Guo, J., & Wang, T. (2015). Low cost and highly reliable radiation hardened latch design in 65 nm CMOS technology. Microelectronics Reliability, 55(6), 863-872.
[12]. Rajaei, R., Tabandeh, M., & Fazeli, M. (2015). Single event multiple upset (SEMU) tolerant latch designs in presence of process and temperature variations. Journal of Circuits, Systems and Computers, 24(01), 1550007.
[13]. Rajaei, R., Tabandeh, M., & Rashidian, B. (2011, October). Single event upset immune latch circuit design using C-element. In ASIC (ASICON), 2011 IEEE 9th International Conference on (pp. 252-255). IEEE.
[14]. Ratti, L. (2013). Ionizing radiation effects in electronic devices and circuits. INFN Laboratori Nazionali di Legnaro, National Course in Detectors and Electronics for High Energy Physics, Astrophysics, Space Applications and Medical Physics, 1-128.
[15]. Sasaki, Y., Namba, K., & Ito, H. (2006, October). Soft error masking circuit and latch using Schmitt trigger circuit. In Defect and Fault Tolerance in VLSI Systems, 2006. DFT'06. 21st IEEE International Symposium on (pp. 327- 335). IEEE.
[16]. Shirinzadeh, S., & Asli, R. N. (2012, May). A novel soft error hardened latch design in 90 nm CMOS. In Computer th Architecture and Digital Systems (CADS), 2012 16th CSI International Symposium on (pp. 60-63). IEEE.
[17]. Watkins, A., & Tragoudas, S. (2017). Radiation Hardened Latch Designs for Double and Triple Node Upsets. IEEE Transactions on Emerging Topics in Computing.
[18]. Yan, A., Huang, Z., Fang, X., Ouyang, Y., & Deng, H. (2017). Single event double-upset fully immune and transient pulse filterable latch design for nanoscale CMOS. Microelectronics Journal, 61, 43-50.