References
[1]. Abreu, E., & Mitra, S. K. (1995). A signal-dependent rank ordered mean (SD-ROM) filter - A new approach for removal of impulses from highly corrupted images. Proc. Int. Conf. Acoust. Speech Signal Processing, 4, 2371-2374.
[2]. Abreu, E., Lightstone, M., Mitra, S. K., & Arakawa, K. (1996). A new efficient approach for the removal of impulse noise from highly corrupted images. IEEE Transactions on Image Processing, 5(6), 1012-1025.
[3]. Baghaie, A., Dāsouza, R. M., & Yu, Z. (2015, April). Sparse and low rank decomposition based batch image alignment for speckle reduction of retinal OCT images. In Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on (pp. 226-230). IEEE.
[4]. Burock, M. A., &Dale , A. M. (2000). Estimation and detection of event-related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach. Human Brain Mapping, 11(4), 249-260.
[5]. Cheng, Q., Shen, H., Zhang, L., Yuan, Q., & Zeng, C. (2014). Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 54-68.
[6]. Chou, H. H., Hsu, L. Y., & Hu, H. T. (2013). Turbulent-PSObased fuzzy image filter with no-reference measures for high-density impulse noise. IEEE Transactions on Cybernetics, 43(1), 296-307.
[7]. Esakkirajan, S., Veerakumar, T., Subramanyam, A. N., & PremChand, C. H. (2011). Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter. IEEE Signal Processing Letters, 18(5), 287-290.
[8]. Fabijanska, A., & Sankowski, D. (2011). Noise adaptive switching median-based filter for impulse noise removal from extremely corrupted images. IET Image Processing, 5(5), 472-480.
[9]. Helen, R., Kamaraj, N., Selvi, K., & Raman, V. R. (2011, March). Segmentation of pulmonary parenchyma in CT lung images based on 2D Otsu optimized by PSO. In Emerging Trends in Electrical and Computer Technology (ICETECT), 2011 International Conference on (pp. 536- 541). IEEE.
[10]. Hosseini, H., & Marvasti, F. (2013). Fast restoration of natural images corrupted by high-density impulse noise. EURASIP Journal on Image and Video Processing, 2013(1), 15-21.
[11]. Huanping, Z., Yan, L., & Huojie, S. (2017). Analysis on digital image Re-Ranking Algorithm based on Multi-feature fusion. Journal of Engineering Science & Technology Review, 10(2), 42-50.
[12]. John, N., Anusha, B., & Kutty, K. (2015). A reliable method for detecting road regions from a single image based on color distribution and vanishing point location. Procedia Computer Science, 58, 2-9.
[13]. Kailath, T. (1971). RKHS approach to detection and estimation problems - I: Deterministic signals in Gaussian noise. IEEE Transactions on Information Theory, 17(5), 530- 549.
[14]. Kim, V., & Iaroslavskii, L. (1986). Rank algorithms for picture processing. Computer Vision Graphics and Image Processing, 35, 234-258.
[15]. Lahmiri, S., & Boukadoum, M. (2016, February). Combined partial differential equation filtering and particle swarm optimization for noisy biomedical image segmentation. In Circuits & Systems (LASCAS), 2016 IEEE 7th Latin American Symposium on (pp. 363-366). IEEE.
[16]. Lee, K. C., Song, H. J., & Sohn, K. H. (1998). Detectionestimation based approach for impulsive noise removal. Electronics Letters, 34(5), 449-450.
[17]. Pan, J., Yang, X., Cai, H., & Mu, B. (2016). Image noise smoothing using a modified Kalman filter. Neurocomputing, 173, 1625-1629.
[18]. Peng, S., & Lucke, L. (1995, April). Multi-level adaptive fuzzy filter for mixed noise removal. In Circuits and Systems, 1995. ISCAS'95., 1995 IEEE International Symposium on (Vol. 2, pp. 1524-1527). IEEE.
[19]. Roomi, S. M. M., & Rajee, R. J. (2011, June). Speckle noise removal in ultrasound images using Particle Swarm Optimization technique. In Recent Trends in Information Technology (ICRTIT), 2011 International Conference on (pp. 926-931). IEEE.
[20]. Smolka, B., Malik, K., & Malik, D. (2015). Adaptive rank weighted switching filter for impulsive noise removal in color images. Journal of Real-Time Image Processing, 10(2), 289-311.
[21]. Srinivasan, K. S., & Ebenezer, D. (2007). A new fast and efficient decision-based algorithm for removal of highdensity impulse noises. IEEE Signal Processing Letters, 14(3), 189-192.
[22]. Wang, H., & Deng, Y. (2007, August). Spatial clustering method based on cloud model. In Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on (Vol. 2, pp. 272-276). IEEE.
[23]. Zhou, Z. (2012). Cognition and removal of impulse noise with uncertainty. IEEE Transactions on Image Processing, 21(7), 3157-3167.