References
[1]. AL-Allaf, O. N. (2015). Removing Noise from Speech
Signals using different approaches of Artificial Neural
Networks. I. J. Information Technology and Computer
Science, 07, 8-18.
[2]. Alvarez, E., Mendez, R., & Langwagen, G. (2004,
October). Detection of clicks using sinusoidal modeling for
the confirmation of the clicks. In Proceedings of the 7
International Conference on Digital Audio Effects (DAFx04)
(Vol. 8).
[3]. Anzalone, M. C., Calandruccio, L., Doherty, K. A., &
Carney, L. H. (2006). Determination of the potential benefit
of time-frequency gain manipulation. Ear and Hearing,
27(5), 480-492.
[4]. Arbogast, T. L., Mason, C. R., & Kidd Jr, G. (2002). The
effect of spatial separation on informational and energetic
masking of speech. The Journal of the Acoustical Society
of America, 112(5), 2086-2098.
[5]. Brons, I., Houben, R., & Dreschler, W. A. (2012).
Perceptual effects of noise reduction by time-frequency
masking of noisy speech. The Journal of the Acoustical
Society of America, 132(4), 2690-2699.
[6]. Brungart, D. S., Chang, P. S., Simpson, B. D., & Wang, D.
(2006). Isolating the energetic component of speech-onspeech
masking with ideal time-frequency segregation.
The Journal of the Acoustical Society of America, 120(6), 4007-4018.
[7]. Canazza, S., De Poli, G., & Mian, G. A. (2010).
Restoration of audio documents by means of extended
Kalman filter. IEEE Transactions on Audio, Speech, and
Language Processing, 18(6), 1107-1115.
[8]. Cao, S., Li, L., & Wu, X. (2011). Improvement of
intelligibility of ideal binary-masked noisy speech by
adding background noise. The Journal of the Acoustical
Society of America, 129(4), 2227-2236.
[9]. Cooke, M., Green, P., Josifovski, L., & Vizinho, A., (2001).
Robust automatic speech recognition with missing and
unreliable acoustic data. Speech Comm., 34, 267-285.
[10]. Garg, K., & Jain, G. (2016, September). A
comparative study of noise reduction techniques for
automatic speech recognition systems. In Advances in
Computing, Communications and Informatics (ICACCI),
2016 International Conference on (pp. 2098-2103). IEEE.
[11]. Ma, N., Bouchard, M., & Goubran, R. A. (2006).
Speech enhancement using a masking threshold
constrained Kalman filter and its heuristic implementations.
IEEE Transactions on Audio, Speech, and Language
Processing, 14(1), 19-32.
[12]. Madhu, N., Spriet, A., Jansen, S., Koning, R., &
Wouters, J. (2013). The potential for speech intelligibility
improvement using the ideal binary mask and the ideal
wiener filter in single channel noise reduction systems:
Application to auditory prostheses. IEEE Transactions on
Audio, Speech, and Language Processing, 21(1), 63-72.
[13]. Oudre, L. (2015). Automatic detection and removal
of impulsive noise in audio signals. Image Processing on
Line, 5, 267-281.
[14]. Rouat, J. (2008). Computational auditory scene
analysis: Principles, algorithms, and applications (Wang, D.
& Brown, G. J., Eds.; 2006) [Book Review]. IEEE Transactions
on Neural Networks, 19(1), 199-199.
[15]. Saha, G., Chakroborty, S., & Senapati, S. (2005,
January). A new silence removal and endpoint detection
algorithm for speech and speaker recognition
applications. In Proceedings of the 11 National
Conference on Communications (NCC) (pp. 291-295).
[16]. Shirzadi, S., Kia, M, S, S., & Hashemi, S, T. (2016). Noise Removing of Audio Speech Signals by Means of Kalman
Filter. International Journal of Advanced Biotechnology
and Research (IJBR), 7, 98-103.
[17]. Wang, D. (2008). Time-frequency masking for speech
separation and its potential for hearing aid design. Trends in
Amplification, 12(4), 332-353.
[18]. Wang, D., Kjems, U., Pedersen, M. S., Boldt, J. B., &
Lunner, T. (2009). Speech intelligibility in background noise
with ideal binary time-frequency masking. The Journal of the Acoustical Society of America, 125(4), 2336-2347.
[19]. Wieland, B., Urban, K., & Funken, S. (2009). Speech
Signal Noise Reduction with Wavelets (Doctoral
Dissertation, Verlag nicht ermittelbar).
[20]. Zhang, X., & Xiong, Y. (2009). Impulse noise removal
using directional difference based noise detector and
Adaptive Weighted Mean Filter. IEEE Signal Processing
Letters, 16(4), 295-298.