References
[1]. Chauhan, M., & Yadav, D. (2015). Sentimental
analysis of product based reviews using machine learning
approaches. Journal of Network Communications and
Emerging Technologies (JNCET), 5(2), 19-25.
[2]. Dey, L., Chakraborty, S., Biswas, A., Bose, B., & Tiwari, S. (2016). Sentiment analysis of review datasets using
Naive Bayes and K-NN Classifier. arXiv preprint arXiv:1610.
09982.
[3]. El-Din, D. M., Mokhtar, H. M., & Ismael, O. (2015).
Online Paper Review Analysis. International Journal of
Advanced Computer Science and Applications (IJACSA),
6(9), 220-229.
[4]. Fang, X., & Zhan, J. (2015). Sentiment analysis using
product review data. Journal of Big Data, 2(1), 1-5.
[5]. Han, J., Pei, J., & Kamber, M. (2011). Data Mining:
rd Concepts and Techniques, 3 Edition. (The Morgan
Kaufmann Series in Data Management Systems), Elsevier.
[6]. Hu, M., & Liu, B. (2004). Mining and summarizing
customer reviews. In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (pp. 168-177). ACM.
[7]. Jack, L., & Tsai, Y. D. (2015). Using text mining of
Amazon reviews to explore user-defined product
highlights and issues. In Proceedings of the International
Conference on Data Mining (DMIN) (p. 92). The Steering
Committee of the World Congress in Computer Science,
Computer Engineering and Applied Computing
(WorldComp).
[8]. Karamibekr, M., & Ghorbani, A. A. (2012). Verb
oriented sentiment classification. In Proceedings of the
2012 IEEE/WIC/ACM International Joint Conferences on
Web Intelligence and Intelligent Agent Technology-
Volume 01 (pp. 327-331). IEEE Computer Society.
[9]. Kaur, G., & Singla, A. (2016). Sentimental Analysis of
Flipkart reviews using Naïve Bayes and Decision Tree algorithm. International Journal of Advanced Research in
Computer Engineering & Technology, 5(1), 148-153.
[10]. Lackermair, G., Kailer, D., & Kanmaz, K. (2013).
Importance of online product reviews from a consumer's
perspective. Advances in Economics and Business, 1(1),
1-5.
[11]. Li, M., Huang, L., Tan, C. H., & Wei, K. K. (2013).
Helpfulness of online product reviews as seen by
consumers: Source and content features. International
Journal of Electronic Commerce, 17(4), 101-136.
[12]. Liu, C. L., Hsaio, W. H., Lee, C. H., Lu, G. C., & Jou, E.
(2012). Movie rating and review summarization in mobile
environment. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(3),
397-407.
[13]. McAuley, J. (n.d.). Amazon Product Data. Retrieved
from http://jmcauley.ucsd.edu/data/amazon/
[14]. Sriram, B. R., Balaji, A., Dhanya, R., & Mariappan, A.
K. (2015). Ranking of Products using Opinion Mining on
Authentic Reviews. International Journal of Emerging
Technology in Computer Science & Electronics (IJETCSE),
13(4), 208-211.
[15]. Zha, Z. J., Yu, J., Tang, J., Wang, M., & Chua, T. S.
(2014). Product aspect ranking and its applications. IEEE
Transactions on Knowledge and Data Engineering, 26(5),
1211-1224.
[16]. Zhu, F., & Zhang, X. (2010). Impact of online
consumer reviews on sales: The moderating role of
product and consumer characteristics. Journal of
Marketing, 74(2), 133-148.