References
[1]. Alam, M. S., & Gao, D. W. (2006, September). Design Modeling & Analysis of a hybrid Wind Fuel cell Distributed Generation system for stand-alone applications. In Global Conference in Renewable Energy Approaches for Desert Regions (Vol. 22).
[2]. Boudries, R. (2013). Analysis of solar hydrogen production in Algeria: Case of an electrolyzerconcentrating photovoltaic system. International Journal of Hydrogen Energy, 38(26), 11507-11518.
[3]. Bouharchouche, A., Berkouk, E. M., & Ghennam, T. (2013, March). Control and energy management of a grid connected hybrid energy system PV-wind with battery energy storage for residential applications. In Ecological Vehicles and Renewable Energies (EVER), 2013 8th International Conference and Exhibition on (pp. 1-11). IEEE.
[4]. Chàvez-Ramirez, A. U., Vallejo-Becerra, V., Cruz, J. C., Ornelas, R., Orozco, G., Munoz-Guerrero, R., & Arriaga, L. G. (2013). A hybrid power plant (Solar–Wind–Hydrogen) model based in artificial intelligence for a remotehousing application in Mexico. International Journal of Hydrogen Energy, 38(6), 2641-2655.
[5]. Colantoni, A., Allegrini, E., Boubaker, K., Longo, L., Di Giacinto, S., & Biondi, P. (2013). New insights for renewable energy hybrid photovoltaic/wind installations in Tunisia through a mathematical model. Energy Conversion and Management, 75, 398-401.
[6]. Farret, F. A., & Simoes, M. G. (2006). Integration of Alternative Sources of Energy. John Wiley & Sons.
[7]. Geng, B., Mills, J. K., & Sun, D. (2011). Energy management control of microturbine-powered plug-in hybrid electric vehicles using the telemetry equivalent consumption minimization strategy. IEEE Transactions on Vehicular Technology, 60(9), 4238-4248.
[8]. Glavin, M. E., Chan, P. K.W., Armstrong, S., & Hurley, W. G. (2008, September). A stand-alone photovoltaic supercapacitor battery hybrid energy storage system. In Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008. 13th (pp. 1688-1695). IEEE.
[9]. Görgün, H. (2006). Dynamic modelling of a Proton Exchange Membrane (PEM) electrolyzer. International Journal of Hydrogen Energy, 31(1), 29-38.
[10]. Guvelioglu, G. H., & Stenger, H. G. (2005). Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells. Journal of Power Sources, 147(1-2), 95-106.
[11]. Hiendro, A., Kurnianto, R., Rajagukguk, M., Simanjuntak, Y. M., & Junaidi. (2013). Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia. Energy, 59, 652-657.
[12]. Himour, K., Ghedamsi, K., & Berkouk, E. M. (2014). Supervision and control of grid connected PV-Storage systems with the five level diode clamped inverter. Energy Conversion and Management, 77, 98-107.
[13]. Hirschenhofer, J. H. (1995). Fuel cell status. IECEC's Conference (pp. 165-170).
[14]. Kabalci, E. (2013). Design and analysis of a hybrid renewable energy plant with solar and wind power. Energy Conversion and Management, 72, 51-59.
[15]. Khan, M. J., & Iqbal, M. T. (2005). Dynamic modeling and simulation of a small wind–fuel cell hybrid energy system. Renewable Energy, 30(3), 421-439.
[16]. Kumar, R., Gupta, R. A., & Bansal, A. K. (2013). Economic analysis and power management of a standalone wind/photovoltaic hybrid energy system using biogeography based optimization algorithm. Swarm and Evolutionary Computation, 8, 33-43.
[17]. La Fontes, G. (2002). Modelling and characterization of the PEM Fuel cell for studying interactions with the static converters (Mastor’s Thesis, National Polytechnic Institute of Toulouse).
[18]. Lee, D., & Kim, Y. (2007). Control of single-phase-tothree- phase AC/DC/AC PWM converters for induction motor drives. IEEE Transactions on Industrial Electronics, 54(2), 797-804.
[19]. Li, J., Chen, Y., & Liu, Y. (2012). Research on a standalone photovoltaic system with a supercapacitor as the energy storage device. Energy Procedia, 16, 1693-1700.
[20]. Malheiro, A., Castro, P. M., Lima, R. M., & Estanqueiro, A. (2015). Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems. Renewable Energy, 83, 646-657.
[21]. Markvart, T. (1996). Sizing of hybrid photovoltaic-wind energy systems. Solar Energy, 57(4), 277-281.
[22]. Merei, G., Berger, C., & Sauer, D. U. (2013). Optimization of an off-grid hybrid PV–Wind–Diesel system with different battery technologies using genetic algorithm. Solar Energy, 97, 460-473.
[23]. Mohan, N., & Undeland, T. M. (2007). Power Electronics: Converters, Applications, and Design. John Wiley & Sons..
[24]. Rajanna, S., & Saini, R. P. (2016). Modeling of integrated renewable energy system for electrification of a remote area in India. Renewable Energy, 90, 175-187.
[25]. Rajashekara, K. (2005). Hybrid fuel-cell strategies for clean power generation. IEEE Transactions on Industry Applications, 41(3), 682-689.
[26]. Ramakumar, R., Abouzahr, I., & Ashenayi, K. (1992). A knowledge-based approach to the design of integrated renewable energy systems. IEEE Transactions on Energy Conversion, 7(4), 648-659.
[27]. Rekioua, D., Bensmail, S., & Bettar, N. (2014). Development of hybrid photovoltaic-fuel cell system for stand-alone application. International Journal of Hydrogen Energy, 39(3), 1604-1611.
[28]. Ru, Y., Kleissl, J., & Martinez, S. (2014). Exact sizing of battery capacity for photovoltaic systems. European Journal of Control, 20(1), 24-37.
[29]. Rustemli, S., & Dincer, F. (2011). Modular simulation of a hybrid power system with diesel, photovoltaic inverter and wind turbine generation. Electronics and Electrical Engineering, 109(3), 1215-1392.
[30]. Semaoui, S., Arab, A. H., Bacha, S., & Azoui, B. (2013a). Optimal sizing of a stand-alone photovoltaic system with energy management in isolated areas. Energy Procedia, 36, 358-368.
[31]. Semaoui, S., Arab, A. H., Bacha, S., & Azoui, B. (2013b). The new strategy of energy management for a photovoltaic system without extra intended for remotehousing. Solar Energy, 94, 71-85.
[32]. Siddaiah, R., & Saini, R. P. (2016). A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renewable and Sustainable Energy Reviews, 58, 376-396.
[33]. Ulleberg, O. (1998). Stand-alone power systems for the future: Optimal design, operation & control of solar-hydrogen energy systems (PhD Dissertation, Norwegian University of Science and Technology).
[34]. Vendoti, S., Muralidhar, M., & Kiranmayi, R. (2017). Optimization of Hybrid Renewable Energy Systems for sustainable and economical power supply at SVCET Chittoor. i-manager's Journal on Power Systems Engineering, 1(1), 26-34.
[35]. Vendoti, S., Muralidhar, M., & Kiranmayi, R. (2018). HOMER based optimization of solar-wind-diesel hybrid system for electrification in a rural village. In 2018 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-6). IEEE.
[36]. Wang, C. (2006). Modeling and control of hybrid wind/photovoltaic/fuel cell distributed generation systems (Doctoral Dissertation, Montana State University).
[37]. Zhu, W., Yang, S., Wang, L., & Luo, L. (2011, May). Modeling and analysis of output features of the solar cells based on MATLAB/Simulink. In Materials for Renewable Energy & Environment (ICMREE), 2011 International Conference on (Vol. 1, pp. 730-734). IEEE.