References
[1]. Akashe, S., Tiwari, N. K., & Sharma, R. (2012). Simulation and stability analysis of 6T and 9T SRAM cell in 45 nm era. In
nd Power, Control and Embedded Systems (ICPCES), 2012 2
International Conference on (pp. 1-6). IEEE.
[2]. Alorda, B., Carmona, C., Torrens, G., & Bota, S. (2016).
An affordable experimental technique for SRAM write
margin characterization for nanometer CMOS technologies.
Microelectronics Reliability, 65, 280-288.
[3]. Butzen, P. F., & Ribas, R. P. (2006). Leakage current in submicrometer
CMOS gates. Universidade Federal do Rio
Grande do Sul, 1-28.
[4]. Farkhani, H., Peiravi, A., & Moradi, F. (2015). A new write
assist technique for SRAM design in 65 nm CMOS
technology. Integration, the VLSI Journal, 50, 16-27.
[5]. Hazucha, P., Karnik, T., Maiz, J., Walstra, S., Bloechel, B.,
Tschanz, J., ... & Borkar, S. (2003). Neutron soft error rate
measurements in a 90-nm CMOS process and scaling
trends in SRAM from 0.25-/spl mu/m to 90-nm generation. In
Electron Devices Meeting, 2003. IEDM'03 Technical Digest.
IEEE International (pp. 21-5). IEEE.
[6]. Hoffmann, K. (1982). Status and trends of dynamic and
static RAMs. Microprocessing and Microprogramming,
10(2-3), 119-127.
.
[7]. Jiao, H., & Kursun, V. (2010). Tri-mode operation for
noise reduction and data preservation in low-leakage
multi-threshold CMOS circuits. In IFIP/IEEE International
Conference on Very Large Scale Integration-System on a
Chip (pp. 258-290). Springer, Berlin, Heidelberg.
[8]. Jiao, H., Qiu, Y., & Kursun, V. (2016a). Low power and
robust memory circuits with asymmetrical ground gating.
Microelectronics Journal, 48, 109-119.
[9]. Jiao, H., Qiu, Y., & Kursun, V. (2016b). Variability-aware
7T SRAM circuit with low leakage high data stability SLEEP
mode. Integration, the VLSI Journal, 53, 68-79.
[10]. Kang, S. M., & Leblebici, Y. (2003). CMOS Digital
Integrated Circuits: Analysis and Design. Tata Mcgraw-Hill.
[11]. Khare, K., Khare, N., Kulhade, V. K., & Deshpande, P.
(2008). VLSI design and analysis of low power 6T SRAM cell
using cadence tool. In Semiconductor Electronics, 2008.
ICSE 2008. IEEE International Conference on (pp. 117-121).
IEEE
[12]. Kim, J., & Mazumder, P. (2017). A robust 12T SRAM cell with improved write margin for ultra-low power applications
in 40nm CMOS. Integration, the VLSI Journal, 57, 1-10.
[13]. Margala, M. (1999). Low-power SRAM circuit design. In
Memory Technology, Design and Testing, 1999. Records of
the 1999 IEEE International Workshop on (pp. 115-122).
IEEE.
[14]. Predictive Technology Model (PTM). Retrieved from
http://www.eas.asu.edu/_ptm/
[15]. Shrivas, J., & Akashe, S. (2012). Impact of Design
Parameter on SRAM Bit Cell. In Advanced Computing &
Communication Technologies (ACCT), 2012 Second
International Conference on (pp. 353-356). IEEE.
[16]. Siebel, O. F., Schneider, M. C., & Galup-Montoro, C.
(2012). MOSFET threshold voltage: Definition, extraction,
and some applications. Microelectronics Journal, 43(5),
329-336.
[17]. Tanaka, C., Saitoh, M., Ota, K., & Numata, T. (2015).
Analysis of static noise margin improvement for low voltage
SRAM composed of nano-scale MOSFETs with ideal
subthreshold factor and small variability. Solid-State
Electronics, 109, 58-62.
[18]. Upadhyay, P., Kar, R., Mandal, D., & Ghoshal, S. P.
(2015). A design of low swing and multi threshold voltage
based low power 12T SRAM cell. Computers & Electrical
Engineering, 45, 108-121.
[19]. Wang, B., Zhou, J., & Kim, T. T. H. (2015). SRAM devices
and circuits optimization toward energy efficiency in multith
V CMOS. Microelectronics Journal, 46(3), 265-272.
[20]. Wang, X., Zhang, Y., Lu, C., & Mao, Z. (2016). Power
efficient SRAM design with integrated bit line charge pump.
AEU- International Journal of Electronics and
Communications, 70(10), 1395-1402.
[21]. Wu, S. L., Lu, C. Y., Tu, M. H., Huang, H. S., Lee, K. D.,
Kao, Y. S., & Chuang, C. T. (2016). A 0.35 V, 375 kHz, 5.43
?W, 40 nm, 128 kb, symmetrical 10T subthreshold SRAM with
tri-state bit-line. Microelectronics Journal, 51, 89-98.
[22]. Zamani, M., Hassanzadeh, S., Hajsadeghi, K., &
Saeidi, R. (2013). A 32 kb 90 nm 9T-cell sub-threshold SRAM
with improved read and write SNM. In Design & Technology
th of Integrated Systems in Nanoscale Era (DTIS), 2013 8
International Conference on (pp. 104-107). IEEE.