References
[1]. Brar , G. S., Hari, Y., Williams, D. K. (2012). Calculation of working pressure for cylindrical vessel under external pressure. Proceedings of the ASME 2012 Pressure Vessels & Piping Divison Conference.
[2]. Combescure, A., & Gusic, G. (2001). Nonlinear buckling of cylinders under external pressure with nonaxisymmetric thickness imperfections using the COMI axisymmetric shell element. International Journal of Solids and Structures, 38(34-35), 6207-6226.
[3]. Cook, R., Markus, D., Plesha, M. (2002). Concept and Applications of Finite Element Analysis. John Wiley, New York.
[4]. Dieter, G. E. (1998). Mechanical Metallurgy. Mc-Graw- Hill Book Company, London.
[5]. Forde, B. W., & Stiemer, S. F. (1987). Improved arc length orthogonality methods for nonlinear finite element analysis. Computers & Structures, 27(5), 625-630.
[6]. Frano, R. L., & Forasassi, G. (2009). Experimental evidence of imperfection influence on the buckling of thin cylindrical shell under uniform external pressure. Nuclear Engineering and Design, 239(2), 193-200.
[7]. Ghazijahani, T. G., & Showkati, H. (2013). Locally imperfect conical shells under uniform external pressure. Strength of Materials, 45(3), 369-377.
[8]. Ghazijahani, T. G., Jiao, H., & Holloway, D. (2014). Experiments on dented cylindrical shells under peripheral pressure. Thin-Walled Structures, 84, 50-58.
[9]. Ghazijahani, T. G., Jiao, H., & Holloway, D. (2015). Plastic buckling of dented steel circular tubes under axial compression: An experimental study. Thin-Walled Structures, 92, 48-54.
[10]. Goncalves, P. B., & Batista, R. C. (1985). Buckling and sensitivity estimates for ring-stiffened cylinders under external pressure. International Journal of Mechanical Sciences, 27(1-2), 1-11.
[11]. Guggenberger, W. (1995). Buckling and postbuckling of imperfect cylindrical shells under external pressure. Thin- Walled Structures, 23(1-4), 351-366.
[12]. Hautala, K. T. (2002). Buckling reduction factors for stainless steel shell structures. Retrieved from http://www.cedinox.es/opencms901/export/sites/cedinox/. galleries/publicaciones-tecnicas/Hautala_EN.pdf
[13]. James G. A. & Croll. (2006). Stability in Shells. Nonlinear Dynamics, 43,17-28.
[14]. Niloufari, A., Showkati, H., Maali, M., & Fatemi, S. M. (2014). Experimental investigation on the effect of geometric imperfections on the buckling and post-buckling behavior of steel tanks under hydrostatic pressure. Thin-Walled Structures, 74, 59-69.
[15]. Prabu, B., Bujjibabu, N., Saravanan, S., & Venkatraman, A. (2007). Effect of a dent of different sizes and angles of inclination on buckling strength of a short stainless steel cylindrical shell subjected to uniform axial compression. Advances in Structural Engineering, 10(5), 581-591.
[16]. Prabu, B., Raviprakash, A. V., & Rathinam, N. (2012). Numerical buckling analysis of thin cylindrical shells with combined distributed and local geometrical imperfections under uniform axial compression. International Journal of Computer Aided Engineering and Technology, 4(4), 295-320.
[17]. Prabu, B., Raviprakash, A. V., & Venkatraman, A. (2010). Parametric study on buckling behaviour of dented short carbon steel cylindrical shell subjected to uniform axial compression. Thin-Walled Structures, 48(8), 639-649.
[18]. Prabu, B., Raviprakash, A. V., & Venkatraman, A. (2012). Neighbourhood effect of two short dents on buckling behaviour of short thin stainless steel cylindrical shells. International Journal of Computer Aided Engineering and Technology, 4(2), 143-164.
[19]. Rathinam, N., & Prabu, B. (2013a). Static buckling analysis of thin cylindrical shell with centrally located dent under uniform lateral pressure. International Journal of Steel Structures, 13(3), 509-518.
[20]. Rathinam, N., & Prabu, B. (2013b). Strength of dented thin cylindrical shells under external pressure. In Shell Structures: Theory and Application (pp.433-436).
[21]. Rathinam, N., & Prabu, B. (2015). Numerical study on influence of dent parameters on critical buckling pressure of thin cylindrical shell subjected to uniform lateral pressure. Thin-Walled Structures, 88, 1-15.
[22]. Raviprakash, A. V., Prabu, B., & Alagumurthi, N. (2011). Ultimate strength of a square plate with a longitudinal/transverse dent under axial compression. Journal of Mechanical Science and Technology, 25(9), 2377.
[23]. Raviprakash, A. V., Prabu, B., & Alagumurthi, N. (2012). Residual ultimate compressive strength of dented square plates. Thin-Walled Structures, 58, 32-39.
[24]. Ross, C., Little, A., Brown, G., & Saphiu, A. (2009). Buckling of near-perfect thick-walled circular cylinders under-external Hydrostatic pressure. Journal of Ocean Technology, 4(2), 84-103.
[25]. Schneider, W., & Brede, A. (2005). Consistent equivalent geometric imperfections for the numerical buckling strength verification of cylindrical shells under uniform external pressure. Thin-Walled Structures, 43(2), 175-188.
[26]. Showkati, H., & Ansourian, P. (1996). Influence of primary boundary conditions on the buckling of shallow cylindrical shells. Journal of Constructional Steel Research, 36(1), 53-75.
[27]. Song, C. Y., Teng, J. G., & Rotter, J. M. (2004). Imperfection sensitivity of thin elastic cylindrical shells subject to partial axial compression. International Journal of Solids and Structures, 41(24-25), 7155-7180.
[28]. Windenburg, D. F., & Trilling, C. (1934). Collapse by instability of thin cylindrical shells under external pressure. Trans. ASME, 11, 819-825.