Photovoltaic Module-Integrated AC Inverter

Koti Babu Rasabattula*, Santhosh Kumar K.**
* PG Scholar, Department of Electrical and Electronics Engineering, Gudlavalleru Engineering College, JNTUK, Gudlavalleru (A.P), India.
** Assistant Professor, Department of Electrical and Electronics Engineering, Gudlavalleru Engineering College, JNTUK, Gudlavalleru (A.P), India.
Periodicity:February - April'2018
DOI : https://doi.org/10.26634/JIC.6.2.14473

Abstract

Nowadays, the growth of Module Integrated Converters (MIC) concept is going on increasing. This concept was developed for Photovoltaic (PV) applications to improve the efficiency of the converters. In this paper, the authors have proposed a submodule Maximum Power Point (MPP) tracking algorithm to track the maximum power from the partially shaded cells. Generally, PV module have three submodules. Each submodule is formed by series connection of two strings. Here a different Perturb and Observe (P & O) algorithm is considered for each submodule to track maximum power from the all three submodules. Each submodule will have their own DC-DC converter. In Direct Current (DC) stage, DC-DC converters are connected in three configurations to serve sufficient energy to inverter for single phase grid connected systems.

Keywords

AC Module, Distributed Maximum Power Point (MPP), Photovoltaic (PV), Subpanel.

How to Cite this Article?

Babu, K., Kumar, K. S. (2018). PV-Module-Integrated AC Inverter. i-manager’s Journal on Instrumentation and Control Engineering, 6(2), 10-20. https://doi.org/10.26634/JIC.6.2.14473

References

[1]. Agarwal, A., Singh, R., Ryu, S. H., Richmond, J., Capell, C., Schwab, S., ... & Palmour, J. (2002). 600 V, 1- 40 A, Schottky diodes in SiC and their applications. In Proc. Int'l Power Electronics Technology Conf. (pp. 631-639).
[2]. Araújo, S. V., Zacharias, P., & Mallwitz, R. (2010). Highly efficient single-phase transformerless inverters for gridconnected photovoltaic systems. IEEE Transactions on Industrial Electronics, 57(9), 3118-3128.
[3]. Attanasio, R., Gennaro, F., & Scuderi, G. (2012, May). Design optimization of a 250 W microinverter for distributed photvoltaic applications. In Proc. PCIM Eur. Int. Exhib. Conf. Power Electron. Intell. Motion Renewable Energy Energy Manage. (pp. 420-427).
[4]. Baliga, B. J. (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media.
[5]. Bell, R., & Pilawa-Podgurski, R. C. (2015). Decoupled and distributed maximum power point tracking of seriesconnected photovoltaic submodules using differential power processing. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(4), 881-891.
[6]. Bergveld, H. J., Büthker, D., Castello, C., Doorn, T., de Jong, A., van Otten, R., & de Waal, K. (2013). Modulelevel DC/DC conversion for photovoltaic systems: The delta-conversion concept. IEEE Transactions on Power Electronics, 28(4), 2005-2013.
[7]. Bletterie, B., Bründlinger, R., Häberlin, H., Baumgartner, F., Schmidt, H., Burger, B., ... & Abella, M. A. (2008). Redefinition of the European efficiency - finding the compromise between simplicity and accuracy. Proc. EU PVSEC (pp. 2735-2742).
[8]. Brainard, G. L. (1995). U.S. Patent No. 5,479,083. Washington, DC: U.S. Patent and Trademark Office.
[9]. Brekken, T., Bhiwapurkar, N., Rathi, M., Mohan, N., Henze, C., & Moumneh, L. R. (2002). Utility-connected power converter for maximizing power transfer from a photovoltaic source while drawing ripple-free current. In Power Electronics Specialists Conference, 2002. PESC rd 02. 2002 IEEE 33 Annual (Vol. 3, pp. 1518-1522). IEEE.
[10]. Burger, B., Goeldi, B., Rogalla, S., & Schmidt, H. (2010). Module integrated electronics - An overview. In th Proc. 25 Eur. Conf. Photovolt. Solar Energy (pp. 3700- 3707).
[11]. Cao, J., Schofield, N., & Emadi, A. (2008, September). Battery balancing methods: A comprehensive review. In Vehicle Power and Propulsion Conference, 2008. VPPC'08 (pp. 1-6). IEEE.
[12]. Carbone, R. (2015). PV plants with distributed MPPT founded on batteries. Solar Energy, 122, 910-923.
[13]. Chapman, P. L. (2010). Understanding Inverter Strategies. Solar Novus. Retrieved from http://www. solarnovus.com/understanding-inverter-strategies_ N634.html
[14]. Dick, C. P., & De Doncker, R. W. (2010). Multiresonant Converters as Photovoltaic Module Integrated Maximum Power Point Tracker (No. RWTH-CONV-114037). Lehrstuhl und Institut für Stromrichtertechnik und Elektrische Antriebe.
[15]. Du, Y., & Lu, D. D. C. (2011). Battery-integrated boost converter utilizing distributed MPPT configuration for photovoltaic systems. Solar Energy, 85(9), 1992-2002.
[16]. Esram, T., & Chapman, P. L. (2007). Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion, 22(2), 439-449.
[17]. Fornage, M. (2010). U.S. Patent No. 7,796,412. Washington, DC: U.S. Patent and Trademark Office.
[18]. Fornage, M. (2011). US Patent No. 8,035,257B2. Washington, DC: US. Patent and Trademark Office.
[19]. Fornage, M. (2014). U.S. Patent No. 8,873,252. Washington, DC: U.S. Patent and Trademark Office.
[20]. Hu, H., Harb, S., Kutkut, N., Batarseh, I., & Shen, Z. J. (2013). A review of power decoupling techniques for microinverters with three different decoupling capacitor locations in PV systems. IEEE Transactions on Power Electronics, 28(6), 2711-2726.
[21]. Jehle, A. (2013). Module-integrarte photovoltaik inverter with 3*MPP-tracking mach barke its studiever schiedener System konzepte (Master's Thesis, ETH Zurich, Switzerland).
[22]. Kadri, R., Gaubert, J. P., & Champenois, G. (2012). Nondissipative string current diverter for solving the cascaded DC–DC converter connection problem in photovoltaic power generation system. IEEE Transactions on Power Electronics, 27(3), 1249-1258.
[23]. Kasper, M., Bortis, D., & Kolar, J. W. (2014). Classification and comparative evaluation of PV panelintegrated DC–DC converter concepts. IEEE Transactions on Power Electronics, 29(5), 2511-2526.
24]. Kasper, M., Ritz, M., Bortis, D., & Kolar, J. W. (2013, October). PV panel-integrated high step-up high efficiency isolated GaN DC-DC boost converter. In Telecommunications Energy Conference ‘Smart Power th and Efficiency’ (INTELEC), Proceedings of 2013 35 International (pp. 1-7). VDE,
25]. Kjaer, S. B. (2005). Design and Control of an Inverter for Photovoltaic Applications (Doctoral Dissertation, Institute of Energy Technology, Aalborg University).
[26]. Kjaer, S. B., Pedersen, J. K., & Blaabjerg, F. (2005). A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Transactions on Industry Applications, 41(5), 1292-1306.
[27]. Krein, P. T., & Balog, R. S. (2009, February). Cost Costeffective hundred-year life for single-phase inverters and rectifiers in solar and LED lighting applications based on minimum capacitance requirements and a ripple power port. In Applied Power Electronics Conference and Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE (pp. 620-625). IEEE.
[28]. Krein, P. T., Balog, R. S., & Mirjafari, M. (2012). Minimum energy and capacitance requirements for single-phase inverters and rectifiers using a ripple port. IEEE Transactions on Power Electronics, 27(11), 4690- 4698.
[29]. Krishnaswami, H. (2011, September). Photovoltaic microinverter using single-stage isolated high-frequency link series resonant topology. In Energy Conversion Congress and Exposition (ECCE), 2011 IEEE (pp. 495-500). IEEE.
[30]. Li, Q., & Wolfs, P. (2008). A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations. IEEE
Transactions on Power Electronics, 23(3), 1320-1333.
[31]. MacAlpine, S. M., Erickson, R. W., & Brandemuehl, M. J. (2013). Characterization of power optimizer potential to increase energy capture in photovoltaic systems operating under nonuniform conditions. IEEE Transactions on Power Electronics, 28(6), 2936-2945.
[32]. Meneses, D., Blaabjerg, F., Garcia, O., & Cobos, J. A. (2013). Review and comparison of step-up transformerless topologies for photovoltaic AC-module application. IEEE Transactions on Power Electronics, 28(6), 2649-2663.
[33]. Oldenkamp, H., & de Jong, I. (2009, September). th The return of the AC-module inverter. In 24 European Photovoltaic Solar Energy Conference (Vol. 400, pp. 3101-3104).
[34]. Pandiarajan, N., & Muthu, R. (2011, January). Mathematical modeling of photovoltaic module with st Simulink. In Electrical Energy Systems (ICEES), 2011 1 International Conference on (pp. 258-263). IEEE.
[35]. Pilawa-Podgurski, R. C., & Perreault, D. J. (2013). Submodule integrated distributed maximum power point tracking for solar photovoltaic applications. IEEE Transactions on Power Electronics, 28(6), 2957-2967.
[36]. Pragallapati, N., & Agarwal, V. (2013, June). Flyback configuration based micro-inverter with distributed MPPT of partially shaded PV module and energy recovery scheme. In Photovoltaic Specialists Conference (PVSC), th 2013 IEEE 39 (pp. 2927-2931). IEEE.
[37]. Qin, S., Barth, C.B., and Pilawa-Podgurski, R.C.N. (2014). Enhancing micro-inverter energy capture with sub-module differential power processing. IEEE Transactions on Power Electronics, 31(5), 3575-3585.
[38]. Shenoy, P. S., Johnson, B., & Krein, P. T. (2012, February). Differential power processing architecture for increased energy production and reliability of photovoltaic systems. In Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE (pp. 1987-1994). IEEE.
[39]. Shimizu, T., Hirakata, M., Kamezawa, T., & Watanabe, H. (2001). Generation control circuit for photovoltaic modules. IEEE Transactions on Power Electronics, 16(3), 293-300.
[40]. Stauth, J., Seeman, M., & Kesarwani, K. (2012, February). A high-voltage CMOS IC and embedded system for distributed photovoltaic energy optimization with over 99% effective conversion efficiency and insertion loss below 0.1%. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International (pp. 100-102). IEEE.
[41]. Walker, G. R., & Sernia, P. C. (2004). Cascaded DCDC converter connection of photovoltaic modules. IEEE Transactions on Power Electronics, 19(4), 1130-1139.
[42]. Yang, B., Li, W., Zhao, Y., & He, X. (2010). Design and analysis of a grid-connected photovoltaic power system. IEEE Transactions on Power Electronics, 25(4), 992-1000.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.