References
[1]. Agarwal, A., Singh, R., Ryu, S. H., Richmond, J.,
Capell, C., Schwab, S., ... & Palmour, J. (2002). 600 V, 1-
40 A, Schottky diodes in SiC and their applications. In Proc.
Int'l Power Electronics Technology Conf. (pp. 631-639).
[2]. Araújo, S. V., Zacharias, P., & Mallwitz, R. (2010). Highly
efficient single-phase transformerless inverters for gridconnected
photovoltaic systems. IEEE Transactions on
Industrial Electronics, 57(9), 3118-3128.
[3]. Attanasio, R., Gennaro, F., & Scuderi, G. (2012, May).
Design optimization of a 250 W microinverter for
distributed photvoltaic applications. In Proc. PCIM Eur. Int.
Exhib. Conf. Power Electron. Intell. Motion Renewable
Energy Energy Manage. (pp. 420-427).
[4]. Baliga, B. J. (2010). Advanced Power MOSFET
Concepts. Springer Science & Business Media.
[5]. Bell, R., & Pilawa-Podgurski, R. C. (2015). Decoupled
and distributed maximum power point tracking of seriesconnected
photovoltaic submodules using differential
power processing. IEEE Journal of Emerging and
Selected Topics in Power Electronics, 3(4), 881-891.
[6]. Bergveld, H. J., Büthker, D., Castello, C., Doorn, T., de
Jong, A., van Otten, R., & de Waal, K. (2013). Modulelevel DC/DC conversion for photovoltaic systems: The
delta-conversion concept. IEEE Transactions on Power
Electronics, 28(4), 2005-2013.
[7]. Bletterie, B., Bründlinger, R., Häberlin, H.,
Baumgartner, F., Schmidt, H., Burger, B., ... & Abella, M. A.
(2008). Redefinition of the European efficiency - finding
the compromise between simplicity and accuracy. Proc.
EU PVSEC (pp. 2735-2742).
[8]. Brainard, G. L. (1995). U.S. Patent No. 5,479,083.
Washington, DC: U.S. Patent and Trademark Office.
[9]. Brekken, T., Bhiwapurkar, N., Rathi, M., Mohan, N.,
Henze, C., & Moumneh, L. R. (2002). Utility-connected
power converter for maximizing power transfer from a
photovoltaic source while drawing ripple-free current. In
Power Electronics Specialists Conference, 2002. PESC
rd 02. 2002 IEEE 33 Annual (Vol. 3, pp. 1518-1522). IEEE.
[10]. Burger, B., Goeldi, B., Rogalla, S., & Schmidt, H.
(2010). Module integrated electronics - An overview. In
th Proc. 25 Eur. Conf. Photovolt. Solar Energy (pp. 3700-
3707).
[11]. Cao, J., Schofield, N., & Emadi, A. (2008, September).
Battery balancing methods: A comprehensive review. In
Vehicle Power and Propulsion Conference, 2008.
VPPC'08 (pp. 1-6). IEEE.
[12]. Carbone, R. (2015). PV plants with distributed MPPT
founded on batteries. Solar Energy, 122, 910-923.
[13]. Chapman, P. L. (2010). Understanding Inverter
Strategies. Solar Novus. Retrieved from http://www.
solarnovus.com/understanding-inverter-strategies_
N634.html
[14]. Dick, C. P., & De Doncker, R. W. (2010). Multiresonant
Converters as Photovoltaic Module Integrated
Maximum Power Point Tracker (No. RWTH-CONV-114037).
Lehrstuhl und Institut für Stromrichtertechnik und
Elektrische Antriebe.
[15]. Du, Y., & Lu, D. D. C. (2011). Battery-integrated boost
converter utilizing distributed MPPT configuration for
photovoltaic systems. Solar Energy, 85(9), 1992-2002.
[16]. Esram, T., & Chapman, P. L. (2007). Comparison of
photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion,
22(2), 439-449.
[17]. Fornage, M. (2010). U.S. Patent No. 7,796,412.
Washington, DC: U.S. Patent and Trademark Office.
[18]. Fornage, M. (2011). US Patent No. 8,035,257B2.
Washington, DC: US. Patent and Trademark Office.
[19]. Fornage, M. (2014). U.S. Patent No. 8,873,252.
Washington, DC: U.S. Patent and Trademark Office.
[20]. Hu, H., Harb, S., Kutkut, N., Batarseh, I., & Shen, Z. J.
(2013). A review of power decoupling techniques for
microinverters with three different decoupling capacitor
locations in PV systems. IEEE Transactions on Power
Electronics, 28(6), 2711-2726.
[21]. Jehle, A. (2013). Module-integrarte photovoltaik
inverter with 3*MPP-tracking mach barke its studiever
schiedener System konzepte (Master's Thesis, ETH Zurich,
Switzerland).
[22]. Kadri, R., Gaubert, J. P., & Champenois, G. (2012).
Nondissipative string current diverter for solving the
cascaded DC–DC converter connection problem in
photovoltaic power generation system. IEEE Transactions
on Power Electronics, 27(3), 1249-1258.
[23]. Kasper, M., Bortis, D., & Kolar, J. W. (2014).
Classification and comparative evaluation of PV panelintegrated
DC–DC converter concepts. IEEE Transactions
on Power Electronics, 29(5), 2511-2526.
24]. Kasper, M., Ritz, M., Bortis, D., & Kolar, J. W. (2013,
October). PV panel-integrated high step-up high
efficiency isolated GaN DC-DC boost converter. In
Telecommunications Energy Conference ‘Smart Power
th and Efficiency’ (INTELEC), Proceedings of 2013 35
International (pp. 1-7). VDE,
25]. Kjaer, S. B. (2005). Design and Control of an Inverter
for Photovoltaic Applications (Doctoral Dissertation,
Institute of Energy Technology, Aalborg University).
[26]. Kjaer, S. B., Pedersen, J. K., & Blaabjerg, F. (2005). A
review of single-phase grid-connected inverters for
photovoltaic modules. IEEE Transactions on Industry
Applications, 41(5), 1292-1306.
[27]. Krein, P. T., & Balog, R. S. (2009, February). Cost Costeffective
hundred-year life for single-phase inverters and
rectifiers in solar and LED lighting applications based on
minimum capacitance requirements and a ripple power
port. In Applied Power Electronics Conference and
Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE
(pp. 620-625). IEEE.
[28]. Krein, P. T., Balog, R. S., & Mirjafari, M. (2012).
Minimum energy and capacitance requirements for
single-phase inverters and rectifiers using a ripple port.
IEEE Transactions on Power Electronics, 27(11), 4690-
4698.
[29]. Krishnaswami, H. (2011, September). Photovoltaic
microinverter using single-stage isolated high-frequency
link series resonant topology. In Energy Conversion
Congress and Exposition (ECCE), 2011 IEEE (pp. 495-500).
IEEE.
[30]. Li, Q., & Wolfs, P. (2008). A review of the single phase
photovoltaic module integrated converter topologies
with three different DC link configurations. IEEE
Transactions on Power Electronics, 23(3), 1320-1333.
[31]. MacAlpine, S. M., Erickson, R. W., & Brandemuehl,
M. J. (2013). Characterization of power optimizer
potential to increase energy capture in photovoltaic
systems operating under nonuniform conditions. IEEE
Transactions on Power Electronics, 28(6), 2936-2945.
[32]. Meneses, D., Blaabjerg, F., Garcia, O., & Cobos, J.
A. (2013). Review and comparison of step-up
transformerless topologies for photovoltaic AC-module
application. IEEE Transactions on Power Electronics,
28(6), 2649-2663.
[33]. Oldenkamp, H., & de Jong, I. (2009, September).
th The return of the AC-module inverter. In 24 European
Photovoltaic Solar Energy Conference (Vol. 400, pp.
3101-3104).
[34]. Pandiarajan, N., & Muthu, R. (2011, January).
Mathematical modeling of photovoltaic module with
st Simulink. In Electrical Energy Systems (ICEES), 2011 1
International Conference on (pp. 258-263). IEEE.
[35]. Pilawa-Podgurski, R. C., & Perreault, D. J. (2013).
Submodule integrated distributed maximum power point
tracking for solar photovoltaic applications. IEEE Transactions on Power Electronics, 28(6), 2957-2967.
[36]. Pragallapati, N., & Agarwal, V. (2013, June). Flyback
configuration based micro-inverter with distributed MPPT
of partially shaded PV module and energy recovery
scheme. In Photovoltaic Specialists Conference (PVSC),
th 2013 IEEE 39 (pp. 2927-2931). IEEE.
[37]. Qin, S., Barth, C.B., and Pilawa-Podgurski, R.C.N.
(2014). Enhancing micro-inverter energy capture with
sub-module differential power processing. IEEE
Transactions on Power Electronics, 31(5), 3575-3585.
[38]. Shenoy, P. S., Johnson, B., & Krein, P. T. (2012,
February). Differential power processing architecture for
increased energy production and reliability of
photovoltaic systems. In Applied Power Electronics
Conference and Exposition (APEC), 2012 Twenty-Seventh
Annual IEEE (pp. 1987-1994). IEEE.
[39]. Shimizu, T., Hirakata, M., Kamezawa, T., & Watanabe, H. (2001). Generation control circuit for
photovoltaic modules. IEEE Transactions on Power
Electronics, 16(3), 293-300.
[40]. Stauth, J., Seeman, M., & Kesarwani, K. (2012,
February). A high-voltage CMOS IC and embedded
system for distributed photovoltaic energy optimization
with over 99% effective conversion efficiency and
insertion loss below 0.1%. In Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2012 IEEE
International (pp. 100-102). IEEE.
[41]. Walker, G. R., & Sernia, P. C. (2004). Cascaded DCDC
converter connection of photovoltaic modules. IEEE
Transactions on Power Electronics, 19(4), 1130-1139.
[42]. Yang, B., Li, W., Zhao, Y., & He, X. (2010). Design and
analysis of a grid-connected photovoltaic power system.
IEEE Transactions on Power Electronics, 25(4), 992-1000.