References
[1]. Adachi, C., Baldo, M. A., Forrest, S. R., & Thompson, M. E. (2000). High-efficiency organic electrophosphorescent devices with tris (2-phenylpyridine) iridium doped into electron-transporting materials. Applied Physics Letters, 77(6), 904-906.
[2]. Antohe, S. (2000). Electrical and photoelectrical properties of the single-, and multilayer organic photovoltaic cells. Journal of Optoelectronics and Advanced Materials, 2(5), 498-514.
[3]. Antoniadis, H., Abkowitz, M. A., & Hsieh, B. R. (1994). Carrier deep‐trapping mobility‐lifetime products in poly (p‐phenylene vinylene). Applied Physics Letters, 65(16), 2030-2032.
[4]. Birey, H. (1978). Dielectric properties of aluminum oxide films. Journal of Applied Physics, 49(5), 2898-2904.
[5]. Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C. D. D. C., ... & Salaneck, W. R. (1999). Electroluminescence in conjugated polymers. Nature, 397(6715), 121-128.
[6]. He, G., Pfeiffer, M., Leo, K., Hofmann, M., Birnstock, J., Pudzich, R., & Salbeck, J. (2004). High-efficiency and lowvoltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers. Applied Physics Letters, 85(17), 3911-3913.
[7]. Hsu, F. M., Chien, C. H., Shih, P. I., & Shu, C. F. (2009). Phosphine-oxide-containing bipolar host material for blue electrophosphorescent devices. Chemistry of Materials, 21(6), 1017-1022.
[8].Hung, M. C., Liao, J. L., Chen, S. A., Chen, S. H., & Su, A. C. (2005). Fine tuning the purity of blue emission from polydioctylfluorene by end-capping with electrondeficient moieties. Journal of the American Chemical Society, 127(42), 14576-14577.
[9]. Hung, W. Y., Tu, G. M., Chen, S. W., & Chi, Y. (2012). Phenylcarbazole-dipyridyl triazole hybrid as bipolar host material for phosphorescent OLEDs. Journal of Materials Chemistry, 22(12), 5410-5418.
[10]. Jonscher, A. K. (1977). The 'universal' dielectric response. Nature, 267, 673-679.
[11]. Jonscher, A. K. (1983). Dielectric Relaxation in Solids. Chelsea Dielectric Press, London.
[12]. Kido, J., Hongawa, K., Okuyama, K., & Nagai, K. (1993). Bright blue electroluminescence from poly (N‐vinylcarbazole). Applied Physics Letters, 63(19), 2627- 2629.
[13]. Kulkarni, A. P., Tonzola, C. J., Babel, A., & Jenekhe, S. A. (2004). Electron transport materials for organic lightemitting diodes. Chemistry of Materials, 16(23), 4556- 4573.
[14]. Kwon, J. E., & Park, S. Y. (2011). Advanced organic optoelectronic materials: Harnessing excited‐state intramolecular proton transfer (ESIPT) process. Advanced Materials, 23(32), 3615-3642.
[15]. Lee, C. W., Kim, O. Y., & Lee, J. Y. (2014). Organic materials for organic electronic devices. Journal of Industrial and Engineering Chemistry, 20(4), 1198-1208.
[16]. Lee, J. H., Wang, P. S., Park, H. D., Wu, C. I., & Kim, J. J. (2011). A high performance inverted organic light emitting diode using an electron transporting material with low energy barrier for electron injection. Organic Electronics, 12(11), 1763-1767.
[17]. Mitschke, U., & Bäuerle, P. (2000). The electroluminescence of organic materials. Journal of Materials Chemistry, 10(7), 1471-1507.
[18]. Murtaza, I., Qazi, I., Karimov, K. S., & Sayyad, M. H. (2011). Direct current and impedance spectroscopic studies on MoO3 modified ZnPc/ITO Schottky diodes. Physica B: Condensed Matter, 406(3), 533-536.
[19]. Petritsch, D. I. K. (2000). Organic Solar Cell Architectures (PhD Thesis, University of Cambridge, United Kingdom and Technische Universitat Graz, Austria).
[20]. Pollak, M., & Geballe, T. H. (1961). Low-frequency conductivity due to hopping processes in silicon. Physical Review, 122(6), 1742-1753.
[21]. Rees, I. D., Robinson, K. L., Holmes, A. B., Towns, C. R., & O'Dell, R. (2002). Recent developments in light-emitting polymers. MRS Bulletin, 27(6), 451-455.
[22]. Reinhard, M., Hanisch, J., Zhang, Z., Ahlswede, E., Colsmann, A., & Lemmer, U. (2011). Inverted organic solar cells comprising a solution-processed cesium fluoride interlayer. Applied Physics Letters, 98(5), 053303-1- 053303-3.
[23]. Ridge, C. J., Harrop, P. J., & Cambell, D. S. (1968). Amorphous Pb-Ti-O Capacitors. Thin Solid Films, 2(5-6), 413- 422.
[24]. Strohriegl, P., & Grazulevicius, J. V. (2002). Charge‐Transporting Molecular Glasses. Advanced Materials, 14(20), 1439-1452.
[25]. Tang, C. W. (1982). U.S. Patent No. 4,356,429. Washington, DC: U.S. Patent and Trademark Office.
[26]. Tao, Y., Wang, Q., Ao, L., Zhong, C., Yang, C., Qin, J., & Ma, D. (2009). Highly efficient phosphorescent organic light-emitting diodes hosted by 1, 2, 4-triazole-cored triphenylamine derivatives: Relationship between structure and optoelectronic properties. The Journal of Physical Chemistry C, 114(1), 601-609.
[27]. Tsai, M. H., Lin, H. W., Su, H. C., Ke, T. H., Wu, C. C., Fang, F. C., ... & Wu, C. I. (2006). Highly efficient organic blue electrophosphorescent devices based on 3, 6‐bis (triphenylsilyl) carbazole as the host material. Advanced Materials, 18(9), 1216-1220.
[28]. Tsang, S. W., So, S. K., & Xu, J. B. (2006). Application of admittance spectroscopy to evaluate carrier mobility in organic charge transport materials. Journal of Applied Physics, 99(1), 013706-1 - 013706-7.
[29]. Vincent, G., Bois, D., & Pinard, P. (1975). Conductance and capacitance studies in GaP Schottky barriers. Journal of Applied Physics, 46(12), 5173-5178.
[ 3 0 ] . Zhang,X.,&Jenekhe,S.A.(2000). Electroluminescence of multicomponent conjugated polymers. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions. Macromolecules, 33(6), 2069-2082.
[31]. Zhuang, J., Su, W., Li, W., Zhou, Y., Shen, Q., & Zhou, M. (2012). Configuration effect of novel bipolar triazole/ carbazole- based host materials on the performance of phosphorescent OLED devices. Organic Electronics, 13(10), 2210-2219.