-5 cm2 V-1s-1 and 4.83575 × 10-6 ohm-1 m-1, respectively. Various electrical parameters are calculated from charge transport
characterization of ITO/ BBPT /Al device. Results of this work demonstrated that the conduction mechanism is in good correlation with the theory of hopping conduction in amorphous materials and the material studied have a potential application as an Electron Transport Layer (ETL) material in optoelectronic devices.

">

Optical and Charge Transport Characterization of Thermally Evaporated 3,5-Bis(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole Thin Films for ETL Applications in Optoelectronic Devices

Gurpreet Singh*, Ramanpreet Kaur Aulakh**, Sameer Kalia***, Neerja Sharma****
* Assistant Professor, Department of Physics, Guru Nanak Dev University College, Narot Jaimal Singh, Pathankot, Punjab, India.
** Assistant Professor, Department of Physics, Guru Nanak Dev University College, Patti, Tarn Taran, Punjab, India.
*** Associate Professor, Department of Physics, DAV College, Amritsar, Punjab, India.
**** Assistant Professor, Department of Physics, DAV College, Amritsar, Punjab, India.
Periodicity:July - September'2018
DOI : https://doi.org/10.26634/jms.6.2.14413

Abstract

This paper presents the surface morphological, optical and charge transport characterization of thermally evaporated thin film of organic material, namely 3, 5-Bis (4-tert-butylphenyl)-4-phenyl-4H-1, 2, 4-triazole (abbreviated as BBPT) prepared by well-known thermal evaporation technique, to be applied as an electron transport material in optoelectronic devices. Carrier mobility and AC conductivity are estimated from frequency dependent admittance -5 characterization performed over a single layer device having structure ITO/ BBPT /Al and are found in the range 5.17 x 10-5 cm2 V-1s-1 and 4.83575 × 10-6 ohm-1 m-1, respectively. Various electrical parameters are calculated from charge transport
characterization of ITO/ BBPT /Al device. Results of this work demonstrated that the conduction mechanism is in good correlation with the theory of hopping conduction in amorphous materials and the material studied have a potential application as an Electron Transport Layer (ETL) material in optoelectronic devices.

Keywords

Charge Transport, Conduction Mechanism, Electron Transport Layer, Mobility, Optoelectronic

How to Cite this Article?

Singh, G., Aulakh, R. K.,Kalia, S. and Sharma, N.(2018). Optical and Charge Transport Characterization of Thermally Evaporated 3,5-Bis(4-Tert-Butylphenyl)-4-Phenyl-4h-1,2,4-Triazole Thin Films for ETL Applications in Optoelectronic Devices. i-manager’s Journal on Material Science, 6(2), 22-29. https://doi.org/10.26634/jms.6.2.14413

References

[1]. Adachi, C., Baldo, M. A., Forrest, S. R., & Thompson, M. E. (2000). High-efficiency organic electrophosphorescent devices with tris (2-phenylpyridine) iridium doped into electron-transporting materials. Applied Physics Letters, 77(6), 904-906.
[2]. Antohe, S. (2000). Electrical and photoelectrical properties of the single-, and multilayer organic photovoltaic cells. Journal of Optoelectronics and Advanced Materials, 2(5), 498-514.
[3]. Antoniadis, H., Abkowitz, M. A., & Hsieh, B. R. (1994). Carrier deep‐trapping mobility‐lifetime products in poly (p‐phenylene vinylene). Applied Physics Letters, 65(16), 2030-2032.
[4]. Birey, H. (1978). Dielectric properties of aluminum oxide films. Journal of Applied Physics, 49(5), 2898-2904.
[5]. Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C. D. D. C., ... & Salaneck, W. R. (1999). Electroluminescence in conjugated polymers. Nature, 397(6715), 121-128.
[6]. He, G., Pfeiffer, M., Leo, K., Hofmann, M., Birnstock, J., Pudzich, R., & Salbeck, J. (2004). High-efficiency and lowvoltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers. Applied Physics Letters, 85(17), 3911-3913.
[7]. Hsu, F. M., Chien, C. H., Shih, P. I., & Shu, C. F. (2009). Phosphine-oxide-containing bipolar host material for blue electrophosphorescent devices. Chemistry of Materials, 21(6), 1017-1022.
[8].Hung, M. C., Liao, J. L., Chen, S. A., Chen, S. H., & Su, A. C. (2005). Fine tuning the purity of blue emission from polydioctylfluorene by end-capping with electrondeficient moieties. Journal of the American Chemical Society, 127(42), 14576-14577.
[9]. Hung, W. Y., Tu, G. M., Chen, S. W., & Chi, Y. (2012). Phenylcarbazole-dipyridyl triazole hybrid as bipolar host material for phosphorescent OLEDs. Journal of Materials Chemistry, 22(12), 5410-5418.
[10]. Jonscher, A. K. (1977). The 'universal' dielectric response. Nature, 267, 673-679.
[11]. Jonscher, A. K. (1983). Dielectric Relaxation in Solids. Chelsea Dielectric Press, London.
[12]. Kido, J., Hongawa, K., Okuyama, K., & Nagai, K. (1993). Bright blue electroluminescence from poly (N‐vinylcarbazole). Applied Physics Letters, 63(19), 2627- 2629.
[13]. Kulkarni, A. P., Tonzola, C. J., Babel, A., & Jenekhe, S. A. (2004). Electron transport materials for organic lightemitting diodes. Chemistry of Materials, 16(23), 4556- 4573.
[14]. Kwon, J. E., & Park, S. Y. (2011). Advanced organic optoelectronic materials: Harnessing excited‐state intramolecular proton transfer (ESIPT) process. Advanced Materials, 23(32), 3615-3642.
[15]. Lee, C. W., Kim, O. Y., & Lee, J. Y. (2014). Organic materials for organic electronic devices. Journal of Industrial and Engineering Chemistry, 20(4), 1198-1208.
[16]. Lee, J. H., Wang, P. S., Park, H. D., Wu, C. I., & Kim, J. J. (2011). A high performance inverted organic light emitting diode using an electron transporting material with low energy barrier for electron injection. Organic Electronics, 12(11), 1763-1767.
[17]. Mitschke, U., & Bäuerle, P. (2000). The electroluminescence of organic materials. Journal of Materials Chemistry, 10(7), 1471-1507.
[18]. Murtaza, I., Qazi, I., Karimov, K. S., & Sayyad, M. H. (2011). Direct current and impedance spectroscopic studies on MoO3 modified ZnPc/ITO Schottky diodes. Physica B: Condensed Matter, 406(3), 533-536.
[19]. Petritsch, D. I. K. (2000). Organic Solar Cell Architectures (PhD Thesis, University of Cambridge, United Kingdom and Technische Universitat Graz, Austria).
[20]. Pollak, M., & Geballe, T. H. (1961). Low-frequency conductivity due to hopping processes in silicon. Physical Review, 122(6), 1742-1753.
[21]. Rees, I. D., Robinson, K. L., Holmes, A. B., Towns, C. R., & O'Dell, R. (2002). Recent developments in light-emitting polymers. MRS Bulletin, 27(6), 451-455.
[22]. Reinhard, M., Hanisch, J., Zhang, Z., Ahlswede, E., Colsmann, A., & Lemmer, U. (2011). Inverted organic solar cells comprising a solution-processed cesium fluoride interlayer. Applied Physics Letters, 98(5), 053303-1- 053303-3.
[23]. Ridge, C. J., Harrop, P. J., & Cambell, D. S. (1968). Amorphous Pb-Ti-O Capacitors. Thin Solid Films, 2(5-6), 413- 422.
[24]. Strohriegl, P., & Grazulevicius, J. V. (2002). Charge‐Transporting Molecular Glasses. Advanced Materials, 14(20), 1439-1452.
[25]. Tang, C. W. (1982). U.S. Patent No. 4,356,429. Washington, DC: U.S. Patent and Trademark Office.
[26]. Tao, Y., Wang, Q., Ao, L., Zhong, C., Yang, C., Qin, J., & Ma, D. (2009). Highly efficient phosphorescent organic light-emitting diodes hosted by 1, 2, 4-triazole-cored triphenylamine derivatives: Relationship between structure and optoelectronic properties. The Journal of Physical Chemistry C, 114(1), 601-609.
[27]. Tsai, M. H., Lin, H. W., Su, H. C., Ke, T. H., Wu, C. C., Fang, F. C., ... & Wu, C. I. (2006). Highly efficient organic blue electrophosphorescent devices based on 3, 6‐bis (triphenylsilyl) carbazole as the host material. Advanced Materials, 18(9), 1216-1220.
[28]. Tsang, S. W., So, S. K., & Xu, J. B. (2006). Application of admittance spectroscopy to evaluate carrier mobility in organic charge transport materials. Journal of Applied Physics, 99(1), 013706-1 - 013706-7.
[29]. Vincent, G., Bois, D., & Pinard, P. (1975). Conductance and capacitance studies in GaP Schottky barriers. Journal of Applied Physics, 46(12), 5173-5178.
[ 3 0 ] . Zhang,X.,&Jenekhe,S.A.(2000). Electroluminescence of multicomponent conjugated polymers. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions. Macromolecules, 33(6), 2069-2082.
[31]. Zhuang, J., Su, W., Li, W., Zhou, Y., Shen, Q., & Zhou, M. (2012). Configuration effect of novel bipolar triazole/ carbazole- based host materials on the performance of phosphorescent OLED devices. Organic Electronics, 13(10), 2210-2219.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.