References
[1]. Ajam, N. (2015). Heart Diseases Diagnoses using Artificial Neural Network. Network and Complex Systems, 5(4), 7-10.
[2]. Al-Milli, N. (2013). Backpropagation neural network for prediction of heart disease. Journal of Theoretical and Applied Information Technology, 56(1), 131-135.
[3]. Bhuvaneswari, S., & Sabarathinam, J. (2013). Defect analysis using artificial neural network. IJ Intelligent Systems and Applications, 5, 33-38.
[4]. Das, R., Turkoglu, I., & Sengur, A. (2009). Effective diagnosis of heart disease through neural networks ensembles. Expert Systems with Applications, 36(4), 7675- 7680.
[5]. Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J. J., Sandhu, S., ... & Froelicher, V. (1989). International application of a new probability algorithm for the diagnosis of coronary artery disease. American Journal of Cardiology, 64(5), 304-310.
[6]. Dua, D., & Taniskidou, E. K. (2017). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
[7]. Dunham, M. H., & Ming, D. (2003). Data Mining: Introductory and Advanced Topics. Prentice Hall.
[8]. Gennari, J. H., Langley, P., & Fisher, D. (1989). Models of incremental concept formation. Artificial Intelligence, 40(1-3), 11-61.
[9]. Ghwanmeh, S., Mohammad, A., & Al-Ibrahim, A. (2013). Innovative artificial neural networks-based decision support system for heart diseases diagnosis. Journal of Intelligent Learning Systems and Applications, 5(3), 176-183.
[10]. Guru, N., Dahiya, A., & Rajpal, N. (2007). Decision support system for heart disease diagnosis using neural network. Delhi Business Review, 8(1), 99-101.
[11]. KiliC, N., Ekici, B., & Hartomacioglu, S. (2015). Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools. Defence Technology, 11(2), 110-122.
[12]. Kumari, M., & Godara, S. (2011). Comparative study of data mining classification methods in cardiovascular disease prediction. International Journal of Computer Science and Technology, 2(2), 304-308.
[13]. Mitchell, M. (1998). An Introduction to Genetic Algorithms. MIT Press.
[14]. Nanila, A. K., & Singh, A. P. (2015). Fault diagnosis of mixed-signal analog circuit using artificial neural network. International Journal of Intelligent Systems and Applications, 7, 11-17.
[15]. Olaniyi, E. O., & Adnan, K. (2014). Onset diabetes diagnosis using artificial neural network. International Journal of Scientific and Engineering Research, 5(10), 754-759.
[16]. Olaniyi, E. O., Oyedotun, O. K., & Adnan, K. (2015). Heart diseases diagnosis using neural networks arbitration. International Journal of Intelligent Systems and Applications, 7(12), 75-82.
[17]. Rajkumar, A., & Reena, G. S. (2010). Diagnosis of heart disease using datamining algorithm. Global Journal of Computer Science and Technology, 10(10), 38-43.
[18]. Sayad, A. T., & Halkarnikar, P. P. (2014). Diagnosis of heart disease using neural network approach. In Proceedings of IRF International Conference (pp. 978- 993).
[19]. Sonawane, J. S., Patil, D. R., & Thakare, V. S. (2013). Survey on decision support system for heart disease. International Journal of Advancements in Technology, 4(1), 89-96.
[20]. Sunila., Panday, P., & Godara, N. (2012). Decision support system for cardiovascular heart disease diagnosis using improved multilayer perceptron. International Journal of Computer Applications, 45(8), 12-20.
[21]. Vanisree, K., & Singaraju, J. (2011). Decision support system for congenital heart disease diagnosis based on signs and symptoms using neural networks. International Journal of Computer Applications, 19(6), 6-12.