References
[1]. Aggarwal, C. C., & Philip, S. Y. (2008). A general survey of privacy-preserving data mining models and algorithms. In Privacy-Preserving Data Mining (pp. 11-52). Springer, Boston, MA.
[2]. Ayala-Rivera, V., McDonagh, P., Cerqueus, T., & Murphy, L. (2014). A systematic comparison and evaluation of k-anonymization algorithms for practitioners. Transactions on Data Privacy, 7(3), 337-370.
[3]. Digital India. (n.d.). In Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Digital_India
[4]. Gambhir, S., & Gondaliya, N. (2012). A survey of Associative Classification Algorithms. International Journal of Engineering Research & Technology (IJERT), 1(9), 1-5.
[5]. Gupta, M., & Aggarwal, N. (2010). Classification techniques analysis. NCCI 2010 -National Conference on Computational Instrumentation CSIO (pp. 128-131).
[6]. Han, J., Pei, J., & Kamber, M. (2012). Data Mining: Concepts and Techniques (3rd Edition), Elsevier.
[7]. Harnsamut, N., Natwichai, J., & Seisungsittisunti, B. (2008). Privacy preserving of associative classification and heuristic approach. In Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2008. SNPD'08. Ninth ACIS International Conference on (pp. 434-439). IEEE.
[8]. Harnsamut, N., Natwichai, J., Sun, X., & Li, X. (2014). Privacy preservation for associative classification. Computational Intelligence, 30(4), 752-770.
[9]. Kundu, G., Munir, S., Bari, M. F., Islam, M. M., & Murase, K. (2007). A novel algorithm for associative classification. In International Conference on Neural Information Processing (pp. 453-459). Springer, Berlin, Heidelberg.
[10]. Li, W., Han, J., & Pei, J. (2001). CMAR: Accurate and efficient classification based on multiple classassociation rules. In ICDM (p. 369-376). IEEE.
[11]. Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. Italicize UCI Machine Learning Repository.
[12]. Liu, B., Hsu., & Ma, Y. (1998). Integrating classification and association rule mining. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD'98) (pp. 80-86).
[13]. Murugeshwari, B., & Sugumar, R. (2016). Rule based privacy preservation method for medical data sets. Middle-East Journal of Scientific Research, 24(8), 2640- 2648.
[14]. Natwichai, J. (2011). Privacy preservation for associative classification: An approximation algorithm. International Journal of Business Intelligence and Data Mining, 6(3), 283-301.
[15]. Nayak, G., & Devi, S. (2011). A survey on privacy preserving data mining: Approaches and techniques. International Journal of Engineering Science and Technology, 3(3), 2127-2133.
[16]. Nikam, S. S. (2015). A comparative study of classification techniques in data mining algorithms. Oriental Journal of Computer Science & Technology, 8(1), 13-19.
[17]. Patel, D., & Kotecha, R. (2017). Privacy Preserving Data Mining: A Parametric Analysis. In Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications (pp. 139-149). Springer, Singapore.
[18]. Raghuram, B., & Gyani, J. (2012). Privacy preserving associative classification on vertically partitioned databases. In Advanced Communication Control and Computing Technologies (ICACCCT), 2012 IEEE International Conference on (pp. 188-192). IEEE.
[19]. Satapathy, S. C., Bhateja, V., Udgata, S. K., & th Pattnaik, P. K. (2016). Proceedings of the 5 International Conference on Frontiers in Intelligent Computing: Theory and Applications (Vol.1), Advances in Intelligent Systems and Computing, Springer.
[20]. Seisungsittisunti, B., & Natwichai, J. (2009). Incremental privacy preservation for associative classification. In Proceedings of the ACM First International Workshop on Privacy and Anonymity for Very Large Databases (pp. 37-44). ACM.
[21]. Tian, T., Hua, D., & Guoping, H. (2010). Privacypreserving classification on horizontally partitioned data. In 2010 International Conference on Computational Intelligence and Security (pp. 230-233). IEEE.
[22]. Vijayarani, S., & Divya, M. (2011). An efficient algorithm for classification rule hiding. International Journal of Computer Applications, 33(3), 39-45.
[23]. Yin, X., & Han, J. (2003). CPAR: Classification based on predictive association rules. In Proceedings of the 2003 SIAM International Conference on Data Mining (pp. 331-335). Society for Industrial and Applied Mathematics.