A simple tunable grounded voltage controlled floating gate metal oxide semiconductor field effect transistor based resistor is proposed in this paper. Highly linear resistance is obtained by cancelling the non-linear term present in the drain current of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with the help of Floating Gate Metal Oxide Semiconductor Field Effect Transistors (FGMOSFETs). The attenuation function is performed by two FGMOSFETs and this signal is fed to the gate terminal of N- channel Metal Oxide Semiconductor Field Effect Transistor (NMOSFET). The input current is applied on the drain terminal of the N- channel Metal Oxide Semiconductor Field Effect Transistor. The drain current equation of the metal Oxide Semiconductor Field Effect Transistor is utilized to achieve the equivalent linear resistance. The features exhibited by a resistor are simplicity, smaller area, broad range of programmability, and wider bandwidth. The range of the resistance observed is from 3.6 kΩ to 10.58 kΩ for the varied control voltage from 1.5 V to 2.4 V. The frequency response of the proposed resistor measured is 288 MHz. The total power dissipation obtained is 22.5 μW. The circuit is verified by simulation after applying macro model of the FGMOSFET. The circuit is simulated using SPICE on 0.13 μm Complementary Metal Oxide Semiconductor (CMOS) technology to demonstrate the efficacy of the proposed circuits. The presented circuit is beneficial for analog signal processing applications that functions in low power.