References
[1]. Aggarwal, C. C., Han, J., Wang, J., & Philip, S. Y. (2003). A Framework for Clustering Evolving Data Streams. In Proceedings 2003 VLDB Conference (pp. 81-92).
[2]. Bradley, P. S., Fayyad, U., & Reina, C. (1998, August). Scaling Clustering Algorithms to Large Databases. In KDD (pp. 9-15).
[3]. Burkardt, J. (2009). K-means clustering. Virginia Tech, Advanced Research Computing, Interdisciplinary Center for Applied Mathematics.
[4]. Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications,40(1), 200-210.
[5]. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37-54.
[6]. Gupta, H., & Srivastava, R. (2014). K-means based document clustering with automatic “K” selection and cluster refinement. International Journal of Computer Science and Mobile Applications, 2(5), 7-13.
[7]. Haraty, R. A., Dimishkieh, M., & Masud, M. (2015). An enhanced k-means clustering algorithm for pattern discovery in healthcare data. International Journal of Distributed Sensor Networks, 11(6).
[8]. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100- 108.
[9]. Helma, C., Cramer, T., Kramer, S., & De Raedt, L. (2004). Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds. Journal of Chemical Information and Computer Sciences, 44(4), 1402-1411.
[10]. Jen, C., Wang, C., Jiang, B. C., Chu, Y., & Chen, M. (2012). Application of classification techniques on development an early-warning system for chronic illnesses. Expert Systems with Applications, 39(10), 8852- 8858.
[11]. Jothi, N., Rashid, N.A.A., & Husain, W. (2015). Data mining in healthcare–a review. Procedia Computer Science, 72, 306-313.
[12]. Kang, S., Kang, P., Ko, T., Cho, S., Rhee, S., & Yu, K. S. (2015). An efficient and effective ensemble of support vector machines for anti-diabetic drug failure prediction. Expert Systems with Applications, 42(9), 4265-4273.
[13]. Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster analysis (Vol. 344). John Wiley & Sons.
[14]. Koh, H. C., & Tan, G. (2011). Data mining applications in healthcare. Journal of Healthcare Information Management,19(2), 64-72.
[15]. Kohonen, T. (2001). Self-Organizing Maps (Vol. 30). Springer.
[16]. Kulis, B., & Jordan, M. I. (2011). Revisiting k-means: New algorithms via Bayesian nonparametrics. arXiv preprint arXiv:1111.0352.
[17]. MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No. 14, pp. 281-297).
[18]. Morr, C. E., & Subercaze, J. (2010). Knowledge management in healthcare. In Handbook of research on developments in e-health and telemedicine: Technological and social perspectives (pp. 490-510). IGI Global.
[19]. Obenshain, M. K. (2004). Application of data mining techniques to healthcare data. Infection Control & Hospital Epidemiology, 25(8), 690-695.
[20]. Soliman, T. H. A., Sewissy, A. A., & AbdelLatif, H. (2010, November). A gene selection approach for classifying diseases based on microarray datasets. In Computer Technology and Development (ICCTD), 2010 2nd International Conference on (pp. 626-631). IEEE.
[21]. Su, C. T., Wang, P. C., Chen, Y. C., & Chen, L. F. (2012). Data mining techniques for assisting the diagnosis of pressure ulcer development in surgical patients. Journal of Medical Systems, 36(4), 2387-2399.
[22]. Tapia, J. J., Morett, E., & Vallejo, E. E. (2009). A clustering genetic algorithm for genomic data mining. In Foundations of Computational Intelligence Volume 4 (pp. 249-275). Springer, Berlin, Heidelberg.
[23]. Tomar, D., & Agarwal, S. (2013). A survey on Data Mining approaches for Healthcare. International Journal of Bio-Science and Bio-Technology, 5(5), 241-266.
[24]. Veloso, R., Portela, F., Santos, M. F., Silva, A., Rua, F., Abelha, A., & Machado, J. (2014). A clustering approach for predicting readmissions in intensive medicine. Procedia Technology, 16, 1307-1316.
[25]. Yang, J., Li, J., Mulder, J., Wang, Y., Chen, S., Wu, H., ... & Pan, H. (2015). Emerging information technologies for enhanced healthcare. Computers in Industry, 69, 3- 11.
[26]. Zheng, B., Yoon, S. W., & Lam, S. S. (2014). Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Systems with Applications, 41(4), 1476- 1482.