References
[1]. Astrom, K. J., & Wittenmark, B. (2013). Computerrd Controlled Systems: Theory and Design, 3rd Ed. Prentice Hall.
[2]. Forssell, U. (1999). Closed-loop identification: Methods, theory, and applications (Doctoral Dissertation, Linköping University Electronic Press).
[3]. Hájek, P. (2011). Municipal credit rating modelling by neural networks. Decision Support Systems, 51(1), 108- 118.
[4]. Haugen, F. (2012). The Good Gain method for simple experimental tuning of PI controllers. Modeling, Identification and Control, 33(4), 141-152.
[5]. Kumar, R., Vardhan, A. H., Bharadwaj, A. S. (2013). Temperature control system using Artificial Neural Network. International Journal of Engineering Research and Applications (IJERA), 3(4), 672-675.
[6]. Ljung, L. (1999). System Identification–Theory for the User. PTR Prentice Hall, Upper Saddle River, NJ.
[7]. Morel, N., Bauer, M., El-Khoury, M., & Krauss, J. (2001). Neurobat, a predictive and adaptive heating control system using Artificial Neural Networks. International Journal of Solar Energy, 21(2-3), 161-201.
[8]. Narendra, K. S., & Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1(1), 4-27.
[9]. Pinjare, S. L., & Kumar, A. (2012). Implementation of neural network back propagation training algorithm on FPGA. International Journal of Computer Applications, 52(6), 1-7.
[10]. Rakhi, R., Rokade, R., Arora, I., Moudgalya, K. M., & Belusonti, K. V. (2014). Documentation for Single Board Heater System. Virtual Labs. Retrieved from http://vlabs.iitb.ac.in/sbhs/static/manual/sbhs-newmanual. pdf
[11]. Tangirala, A. K. (2014). Principles of System Identification: Theory and Practice. CRC Press.
[12]. Yang, I. H., & Kim, K. W. (2000). Development of Artificial Neural Network model for the prediction of descending time of room air temperature. International Journal of Air-Conditioning and Refrigeration, 12(11), 1038-1048.