References
[1]. Ahn, Y. H. (2010). The development of models to
identify relationships between first costs of green building
strategies and technologies and life cycle costs for public
green facilities (Doctoral Dissertation, Virginia Tech).
[2]. Aibinu, A. A., Dassanayake, D., Chan, T. K., &
Thangaraj, R. (2015). Cost estimation for electric light and power elements during building design: A neural network
approach. Engineering, Construction and Architectural
Management, 22(2), 190-213.
[3]. An, S. H., Kim, G. H., & Kang, K. I. (2007). A case-based
reasoning cost estimating model using experience by
analytic hierarchy process. Building and Environment,
42(7), 2573-2579.
[4]. Bala, K., Ahmad Bustani, S., & Shehu Waziri, B. (2014). A
computer-based cost prediction model for institutional
building projects in Nigeria: An Artificial Neural Network
approach. Journal of Engineering, Design and
Technology, 12(4), 519-530.
[5]. Cheng, M. Y., Tsai, H. C., & Hsieh, W. S. (2009). Webbased
conceptual cost estimates for construction projects
using Evolutionary Fuzzy Neural Inference Model.
Automation in Construction, 18(2), 164-172.
[6]. Cheng, M. Y., Tsai, H. C., & Sudjono, E. (2010).
Conceptual cost estimates using evolutionary fuzzy hybrid
neural network for projects in construction industry. Expert
Systems with Applications, 37(6), 4224-4231.
[7]. Eashwar, S., and Geetha, G. (2016). Trade-off Between
Time, Cost, Quality, Safety, Environment - Star Optimization
Model. International Journal of Computer Technology and Applications, 9(11), 5467-5486.
[8]. Fu, F., & Zhang, T. (2016). A New Model for Solving Time-
Cost-Quality Trade-Off Problems in Construction. PloS one,
11(12), e0167142.
[9]. Günayd?n, H. M., & Do?an, S. Z. (2004). A neural
network approach for early cost estimation of structural
systems of buildings. International Journal of Project
Management, 22(7), 595-602.
[10]. Hong, T., Hyun, C., & Moon, H. (2011). CBR-based cost
prediction model-II of the design phase for multi-family
housing projects. Expert Systems with Applications, 38(3),
2797-2808.
[11]. Ji, S. H., Park, M., & Lee, H. S. (2011). Cost estimation
model for building projects using case-based reasoning.
Canadian Journal of Civil Engineering, 38(5), 570-581.
[12]. Juszczyk, M. (2013). The use of artificial neural
networks for residential buildings conceptual cost
estimation. In AIP Conference Proceedings (Vol. 1558, No.
1, pp. 1302-1306). AIP.
[13]. Khang, D. B., & Myint, Y. M. (1999). Time, cost and
quality trade-off in project management: A case study.
International Journal of Project Management, 17(4), 249-
256.
[14]. Kim, G. H., An, S. H., & Kang, K. I. (2004a). Comparison
of construction cost estimating models based on
regression analysis, neural networks, and case-based
reasoning. Building and Environment, 39(10), 1235-1242.
[15]. Kim, G. H., Yoon, J. E., An, S. H., Cho, H. H., & Kang, K. I.
(2004b). Neural network model incorporating a genetic
algorithm in estimating construction costs. Building and
Environment, 39(11), 1333-1340.
[16]. Kim, S. (2013). Hybrid forecasting system based on
case-based reasoning and analytic hierarchy process for
cost estimation. Journal of Civil Engineering and
Management, 19(1), 86-96.
[17]. Koo, C. W., Hong, T., Hyun, C. T., Park, S. H., & Seo, J. O.
(2010). A study on the development of a cost model based
on the owner's decision making at the early stages of a
construction project. International Journal of Strategic
Property Management, 14(2), 121-137.
[18]. Koo, C., Hong, T., & Hyun, C. (2011). The development
of a construction cost prediction model with improved
prediction capacity using the advanced CBR approach.
Expert Systems with Applications, 38(7), 8597-8606.
[19]. Kutner, M., Nachtsheim, C. J., Li. N.W. (2004). Applied
th Linear Statistical Models (5 Ed.), McGraw-Hill/Irwin.
[20]. Lai, C. C., & Lee, W. L. (2006). A WICE approach to
real-time construction cost estimation. Automation in
Construction, 15(1), 12-19.
[21]. Li, H., Shen, Q. P., & Love, P. E. (2005). Cost modelling of
office buildings in Hong Kong: An exploratory study.
Facilities, 23(9/10), 438-452.
[22]. Lowe, D. J., Emsley, M. W., & Harding, A. (2006).
Predicting construction cost using multiple regression
techniques. Journal of Construction Engineering and
Management, 132(7), 750-758.
[23]. Moon, S. W., Kim, J. S., & Kwon, K. N. (2007). Effectiveness of OLAP-based cost data management in
construction cost estimate. Automation in Construction,
16(3), 336-344.
[24]. Saputra, Y. A., & Latiffianti, E. (2015). Project reliability
model considering time–cost–resource relationship under
uncertainty. Procedia Computer Science, 72, 561-568.
[25]. Shankar, N. R., Raju, M. M. K., Srikanth, G., & Bindu, P.
H. (2011). Time, cost and quality trade-off analysis in
construction of projects. Contemporary Engineering
Sciences, 4(6), 289-299.
[26]. Siqueira, I. (1999). Neural network-based cost
estimating (Doctoral Dissertation, Concordia University).
[27]. Sonmez, R. (2004). Conceptual cost estimation of
building projects with regression analysis and neural
networks. Canadian Journal of Civil Engineering, 31(4),
677-683.
[28]. Sonmez, R. (2005). Review of conceptual cost
modeling techniques. AACE International Transactions,
ES71.
[29]. Sonmez, R. (2008). Parametric range estimating of
building costs using regression models and bootstrap.
Journal of Construction Engineering and Management,
134(12), 1011-1016.
[30]. Trost, S. M., & Oberlender, G. D. (2003). Predicting
accuracy of early cost estimates using factor analysis and
multivariate regression. Journal of Construction
Engineering and Management, 129(2), 198-204.
[31]. Yu, W. D. (2006). PIREM: a new model for conceptual
cost estimation. Construction Management and
Economics, 24(3), 259-270.
[32]. Zayed, T. M., & Halpin, D. W. (2005). Productivity and
cost regression models for pile construction. Journal of
Construction Engineering and Management, 131(7), 779-
789.