References
[1]. Abowd, G. D., Bobick, A. F., Essa, I. A., Mynatt, E. D., &
Rogers, W. A. (2002, July). The aware home: A living
laboratory for technologies for successful aging. In
Proceedings of the AAAI-02 Workshop Automation as
Caregiver (pp. 1-7).
[2]. Bauer, E., & Kohavi, R. (1999). An empirical
comparison of voting classification algorithms: Bagging,
boosting, and variants. Machine Learning, 36(1-2), 105-
139.
[3]. Bifet, A., Holmes, G., Pfahringer, B., & Gavalda, R.
(2009, November). Improving adaptive bagging
methods for evolving data streams. In Asian Conference
on Machine Learning (pp. 23-37). Springer, Berlin,
Heidelberg.
[4]. Chen, L., Hoey, J., Nugent, C. D., Cook, D. J., & Yu, Z.
(2012). Sensor-based activity recognition. IEEE
Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(6), 790-808.
[5]. Cook, D. J., Krishnan, N. C., & Rashidi, P. (2013).
Activity discovery and activity recognition: A new
partnership. IEEE Transactions on Cybernetics, 43(3), 820-
828.
[6]. Cook, D., & Das, S. K. (2004). Smart Environments:
Technology, Protocols and Applications (Vol. 43). John
Wiley & Sons.
[7]. Fischer, B., & Buhmann, J. M. (2003). Bagging for pathbased
clustering. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 25(11), 1411-1415.
[8]. Galar, M., Fernandez, A., Barrenechea, E., Bustince,
H., & Herrera, F. (2012). A review on ensembles for the class imbalance problem: bagging-, boosting-, and
hybrid-based approaches. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and
Reviews), 42(4), 463-484.
[9]. Galar, M., Fernández, A., Barrenechea, E., Bustince,
H., & Herrera, F. (2016). New Ordering-Based pruning
metrics for ensembles of Classifiers in Imbalanced
th Datasets. In Proceedings of the 9 International
Conference on Computer Recognition Systems CORES
2015 (pp. 3-15). Springer, Cham.
[10]. Galar, M., Fernández, A., Barrenechea, E., Bustince,
H., & Herrera, F. (2017). NMC: nearest matrix classification
- A new combination model for pruning One-vs-One
ensembles by transforming the aggregation problem.
Information Fusion, 36, 26-51.
[11]. Gardner, S. R.(1998). Building Data warehouse. ACM
Digital Library, 41(9), 52-60.
[12]. Lee, T. H., & Yang, Y. (2006). Bagging binary and
quantile predictors for time series. Journal of
Econometrics, 135(1-2), 465-497.
[13]. MacKay, D. J., & Mac Kay, D. J. (2003). Information
Theory, Inference and Learning Algorithms. Cambridge
University Press.
[14]. Maurer, U., Smailagic, A., Siewiorek, D. P., & Deisher,
M. (2006, April). Activity recognition and monitoring using
multiple sensors on different body positions. In Wearable
and Implantable Body Sensor Networks, 2006. BSN 2006.
International Workshop on (pp. 4-pp). IEEE.
[15]. Modayil, J., Bai, T., & Kautz, H. (2008, September).
Improving the recognition of interleaved activities. In
th Proceedings of the 10 International Conference on Ubiquitous computing (pp. 40-43). ACM.
[16]. Rifkin, R., & Klautau, A. (2004). In defense of one-vsall
classification. Journal of Machine Learning Research,
5(Jan), 101-141.
[17]. Skurichina, M., & Duin, R. P. (2002). Bagging,
boosting and the random subspace method for linear
classifiers. Pattern Analysis & Applications, 5(2), 121-135.
[18]. Tapia, E. M., Intille, S. S., & Larson, K. (2004, April).
Activity recognition in the home using simple and
ubiquitous sensors. In International Conference on
Pervasive Computing (pp. 158-175). Springer, Berlin,
Heidelberg.
[19]. van Kasteren, T. L. M., Englebienne, G., & Kröse, B. J.
(2010). Activity recognition using semi-markov models on
real world smart home datasets. Journal of Ambient
Intelligence and Smart Environments, 2(3), 311-325.
[20]. van Kasteren, T., Noulas, A., Englebienne, G., &
Kröse, B. (2008, September). Accurate activity
th recognition in a home setting. In Proceedings of the 10
International Conference on Ubiquitous Computing (pp.
1-9). ACM.
[21]. Xiang, J., Weng, J. G., Zhuang, Y. T., & Wu, F. (2006).
Ensemble learning HMM for motion recognition and
retrieval by Isomap dimension reduction. Journal of
Zhejiang University-Science A, 7(12), 2063-2072.
[22]. Zappi, P., Lombriser, C., Stiefmeier, T., Farella, E.,
Roggen, D., Benini, L., & Tröster, G. (2008). Activity
recognition from on-body sensors: accuracy-power
trade-off by dynamic sensor selection. In Wireless Sensor
Networks (pp. 17-33). Springer, Berlin, Heidelberg.