References
[1]. Allen Jr, R. C., Durkee, P. A., & Wash, C. H. (1990).
Snow/cloud discrimination with multispectral satellite
measurements. Journal of Applied Meteorology, 29(10),
994-1004.
[2]. Baatz, M., & Schape, A. (2000). Multiresolution
segmentation: An optimization approach for high quality
multi-scale image segmentation. In Strobl J., Blaschke T.,
& Greisebener G. (Eds.), Angewandte Geographische
Informationsverarbeitung XII. Beitrage zum AGITSymposium
Salzburg 2000.
[3]. Bajwa, I. S., Naweed, M. S., Asif, M. N., & Hyder, S. I.
(2009). Feature based image classification by using
principal component analysis. ICGST-GVIP Journal, 9(2),
11-17.
[4]. Benlina, X., Fangfang, L., Xingliang, M., & Huazhong ,
J. (2008). Study on independent component analysis application in classification and change detection of
multispectral images. The International Archives of the
Photogrammetr y, Remote Sensing and Spatial
Information Sciences, 37(B7), 871-876.
[5]. Gitas, I. Z., Mitri, G. H., & Ventura, G. (2004). Objectbased
image classification for burned area mapping of
Creus Cape, Spain, using NOAA-AVHRR imagery. Remote
Sensing of Environment, 92(3), 409-413.
[6]. Katagiri, S., & Nakajima, T. (2004). Radiative
characteristics of cirrus clouds as retrieved from AVHRR.
Journal of the Meteorological Society of Japan. Ser. II,
82(1), 81-99.
[7]. Krishnamoorthy, T. V., & Reddy, G. U. (2018). Fusion
Enhancement of Multispectral Satellite Image by Using
Higher Order Statistics. Asian Journal of Scientific
Research, 11(2), 162-168.
[8]. Kubo, M., & Muramoto, K. I. (2007, July). Classification
of clouds in the Japan Sea area using NOAA AVHRR
satellite images and self-organizing map. In Geoscience
a n d R e m o t e S e n s i n g S y m p o s i u m , 2 0 0 7 . I E E E
International (pp. 2056-2059). IEEE.
[9]. Liu, Y., Xia, J., Shi, C. X., & Hong, Y. (2009). An
improved cloud classification algorithm for China's FY-2C
multi-channel images using artificial neural network.
Sensors, 9(7), 5558-5579.
[10]. Mao, J., & Jain, A. K. (1992). Texture classification
and segmentation using multiresolution simultaneous
autoregressive models. Pattern Recognition, 25(2), 173-
188.
[11]. Nordin, A., Hsu, C. C., & Szu, H. H. (2001). Design of
FPGA ICA for hyperspectral imaging processing. In
Wavelet Applications VIII (Vol. 4391, pp. 444-455).
International Society for Optics and Photonics.
[12]. Rodríguez-Yi, J. L., Shimabukuro, Y. E., & Rudorff, B. F.
T. (2000). Image segmentation for classification of
vegetation using NOAA-AVHRR data. International
Journal of Remote Sensing, 21(1), 167-172.
[13]. Sun, J. (2000). Dynamic monitoring and yield
estimation of crops by mainly using the remote sensing
technique in China. Photogrammetric Engineering and
Remote Sensing, 66(5), 645-650.
[14]. Townshend, J. R. G. (1994). Global data sets for land
applications from the Advanced Very High Resolution
Radiometer: An introduction. International Journal of
Remote Sensing, 15(17), 3319-3332.
[15]. Urbanek, B., Groß, S., Schäfler, A., & Wirth, M. (2017).
Determining stages of cirrus evolution: A cloud
classification scheme. Atmospheric Measurement Techniques, 10(5), 1653-1664.
[16]. Wang, J., & Chang, C. I. (2006). Independent
component analysis-based dimensionality reduction with
applications in hyperspectral image analysis. IEEE
Transactions on Geoscience and Remote Sensing, 44(6),
1586-1600.