References
[1]. AERB. (2008). Extreme values of meteorological
parameters. Atomic Energy Regulatory Board (AERB)
Guide No. NF/SG/ S-3.
[2]. AlHassoun, S. A. (2011). Developing an empirical
formulae to estimate rainfall intensity in Riyadh region.
Journal of King Saud University Engineering Sciences,
23(1), 81–88.
[3]. Ang, A. H. S., & Tang, W. H. (1984). Probability
Concepts in Engineering Planning and Design: Volum IIDecision,
Risk, and Reliability. John Wiley & Sons.
[5]. Baratti, E., Montanari, A., Castellarin, A., Salinas, J. L.,
Viglione, A., & Bezzi, A. (2012). Estimating the flood
frequency distribution at seasonal and annual time
scales. Hydrology and Earth System Sciences, 16(12),
4651-4660.
[6]. Chen, J., & Adams, B. J. (2006). Integration of artificial
neural networks with conceptual models in rainfall-runoff
modeling. Journal of Hydrology, 318(1-4), 232-249.
[7]. Esteves, L. S. (2013). Consequences to flood
management of using different probability distributions to
estimate extreme rainfall. Journal of Environmental
Management, 115(1), 98-105.
[8]. Ghorbani, A. M., Ruskeep, A. H., & Singh, V. P., &
Sivakumar, B. (2010). Flood frequency analysis using
mathematica. Turkish Journal of Engineering and
Environmental Sciences, 34(3), 171-188.
[9]. Hughes, G. L., Rao, S. S., & Rao, T. S. (2007). Statistical
analysis and time-series models for minimum/maximum
temperatures in the Antarctic Peninsula. In Proceedings of
the Royal Society of London A: Mathematical, Physical
and Engineering Sciences (Vol. 463, No. 2077, pp. 241-
259). The Royal Society.
[10]. IAEA. (2003). Meteorological events in site
evaluation for nuclear power plants-IAEA Safety Guide
(No. Ns-G-3.4). International Atomic Energy Agency
(IAEA), Vienna.
[11]. Lieblein, J. (1974). Note on Simplified Estimators for
Type-I Extreme Value Distribution (NBSIR 75-647). National
Bureau of Standards, U.S. Department of Commerce,
Washington D.C.
[12]. Mujere, N. (2011). Flood frequency analysis using
the Gumbel distribution. International Journal of
Computer Science and Engineering, 3(7), 2774-2778.
[13]. Rao, A. R., & Hameed, K. H. (2000). Flood Frequency
Analysis. CRC Publications, Washington, New York.
[14]. Rasel, M. M., & Hossain, S. M. (2015). Development
of rainfall intensity duration frequency equations and curves for seven divisions in Bangladesh. International
Journal of Scientific & Engineering Research, 6(5), 96-
101.
[15]. Varathan, N., Perera, K., & Nalin (2010). Board of
Study in Statistics and Computer Science of the
Postgraduate Institute of Science. University of
Peradeniya, Sri Lanka.
[16]. Vivekanandan, N., Roy, S. K., & Jagtap, R. S. (2012).
Assessment of rainfall and temperature using OSA
estimators of extreme value distributions. Bonfring
International Journal of Software Engineering and Soft
Computing, 2(3), 16-21.
[17]. Vivekanandan, N. (2014). Rainfall frequency
analysis using order statistics approach of extreme value
distributions. SSRG International Journal of Civil
Engineering, 1(4), 6-12.
[18]. Vivekanandan, N. (2015). Modelling of annual extreme rainfall, temperature and wind speed Using OSA
of EV1 and EV2 distributions. International Journal of
Innovative Research in Computer Science and
Technology, 3(4), 57-60.
[19]. Vivekanandan, N. (2016). Statistical analysis of
rainfall data and estimation of peak flood discharge for
ungauged catchments. International Journal of
Research in Engineering and Technology, 5(2), 27-31.
[20]. Vivekanandan, N. (2017). Evaluation of parameter
estimation methods of probability distributions for
extreme value analysis of temperature. International
Journal of Research Studies in Science, Engineering and
Technology, 4(8), 1-9.
[21]. Zhang, J. (2002). Powerful goodness of fit tests based
on the likelihood ratio. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 64(2), 281-
294.