3 was required, while in case of Silicon carbide parts, it was 21 J/mm3 and for polyethylene, it was 1.5 J/mm3 .
">Additive Manufacturing (AM) is emerging as an innovative technology distinguished from traditional manufacturing techniques because of its ability to produce complex, fully functioning and end-use products with great design flexibility. This technology is going to have utmost impact on future manufacturing industries. In the present research study, among the seven AM processes, laser based powder bed fusion (L- PBF) or selective laser sintering is gaining more importance due to its capability to process both metals and non-metals starting from metals to polymer and ceramics. Most L-PBF machines are imported and expensive. Hence R V College of Engineering and KCTU (Karnataka Council for Technological Upgradation) - Government of Karnataka have jointly developed an indigenous L-PBF machine, which has been utilized to conduct studies on effect of processing parameters on sintering of iron, silicon carbide, and polyethylene powders. Three key process parameters, laser power, hatch spacing, and scan speed were chosen for this study. The experiments have been conducted according to L9 orthogonal array based on Taguchi methodology of design of experiments adopted to determine the optimum sintering conditions for each of the three materials. Iron powder was optimally sintered with a laser power of 90 W, scan speed of 500 mm/s, hatch spacing of 0.1 mm, at spot size of 0.5 mm. Silicon Carbide powders were sintered with a laser power of 20 W, scan speed of 25 mm/s, hatch spacing of 0.4 mm, at spot size of 1 mm. Polyethylene powders were sintered using a laser power of 22.5 W, hatch spacing of 0.3 mm, Scan speed of 500 mm/s, at spot size of 1.5 mm. The influence of these parameters on energy density was determined. In order to produce iron parts, an energy density of 18 J/mm3 was required, while in case of Silicon carbide parts, it was 21 J/mm3 and for polyethylene, it was 1.5 J/mm3 .