References
[1]. Abhang, L. B., & Hameedullah, M. (2012). Determination of optimum parameters for multi-performance characteristics in turning by using Grey Relational Analysis. The International Journal of Advanced Manufacturing Technology, 63(1-4), 13-24.
[2]. Amini, S., Khakbaz, H., & Barani, A. (2014). Improvement of Near-Dry Machining and its effect on tool wear in turning of AISI 4142. Materials and Manufacturing Processes, 30(2), 241-247. http://doi.org/10.1080/ 10426914.2014.952029
[3]. Chinchanikar, S., & Choudhury, S. K. (2014). Hard turning using HiPIMS-coated carbide tools: Wear behavior under dry and Minimum Quantity Lubrication (MQL). Measurement: Journal of the International Measurement Confederation, 55, 536-548. http://doi.org/10.1016/ j.measurement.2014.06.002
[4]. Deng, J. L. (1982). Control problems of grey systems. Sys. & Contr. Lett., 1(5), 288-294.
[5]. Feng, S., & Hattori, M. (2000). Cost and Process Information Modeling for Dry Machining. In Proc. of the International Workshop for Environment Conscious Manufacturing-ICEM-2000, (pp.1-8). Retrieved from http://www.mel.nist.gov/div826/library/doc/cost_process.p df
[6]. Gupta, M. K., Sood, P. K., & Sharma, V. S. (2016a). Machining parameters optimization of titanium alloy using Response Surface Methodology and Particle Swarm Optimization under Minimum-Quantity Lubrication environment. Materials and Manufacturing Processes, 31(13), 1671-1682.
[7]. Gupta, M. K., Sood, P. K., & Sharma, V. S. (2016b). Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. Journal of Cleaner Production, 135, 1276-1288.
[8]. Hong, S. Y., & Broomer, M. (2000). Economical and ecological cryogenic machining of AISI 304 austenitic stainless steel. Clean Products and Processes, 2(3), 0157–0166. http://doi.org/10.1007/s100980000073
[9]. Kaynak, Y., Lu, T., & Jawahir, I. S. (2014). Cryogenic Machining-Induced Surface Integrity: A review and comparison with Dry, MQL, and Flood-Cooled Machining. Machining Science and Technology, 18(2), 149-198. http://doi.org/10.1080/10910344.2014.897836
[10]. Kibria, G., Doloi, B., & Bhattacharyya, B. (2013). Optics & Laser Technology experimental investigation and multi-objective optimization of Nd: YAG laser micro-turning process of alumina ceramic using orthogonal array and Grey Relational Analysis. Optics and Laser Technology, 48, 16–27. http://doi.org/10.1016/j.optlastec.2012.09.036
[11]. Kochmaski, P., & Nowacki, J. (2006). Activated gas nitriding of 17-4 PH stainless steel. Surface and Coatings Technology, 200(22-23), 6558-6562. http://doi.org/ 10.1016/j.surfcoat.2005.11.034
[12]. Kouam, J., Songmene, V., Balazinski, M., & Hendrick, P. (2015). Effects of Minimum Quantity Lubricating (MQL) conditions on machining of 7075-T6 aluminum alloy. The International Journal of Advanced Manufacturing Technology, 79(5-8), 1325-1334.
[13]. Kumar, S, V., & Kumar, M, P., (2014). Optimization of cryogenic cooled EDM process parameters using Grey Relational Analysis. Journal of Mechanical Science and Technology, 28, 3777-3784.
[14]. Kuram, E., & Ozcelik, B. (2013). Measurement Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill. Measurement, 46(6), 1849-1864. http://doi.org/ 10.1016/j.measurement.2013.02.002
[15]. Kuzu, A. T., Bijanzad, A., & Bakkal, M. (2015). Experimental investigations of machinability in the turning of compacted Graphite Iron using Minimum Quantity Lubrication. Machining Science and Technology, 19(4), 559–576. http://doi.org/10.1080/10910344.2015.1085313
[16]. Lin, C. L. (2004). Use of the Taguchi method and Grey Relational Analysis to optimize turning operations with multiple performance characteristics. Materials and Manufacturing Processes, 19(2), 209-220.
[17]. Prasanna, J., Karunamoorthy, L., Raman, M. V., Prashanth, S., & Chordia, D. R. (2014). Optimization of process parameters of small hole dry drilling in Ti – 6Al – 4V using Taguchi and Grey Relational Analysis. Measurement, 48, 346-354. http://doi.org/10.1016/j.measurement. 2013.11.020
[18]. Ranganathan, S., & Senthilvelan, T. (2011). Multiresponse optimization of machining parameters in hot turning using grey analysis. The International Journal of Advanced Manufacturing Technology, 56(5-8), 455-462.
[19]. Sarıkaya, M., Yılmaz, V., & Güllü, A. (2016). Analysis of cutting parameters and cooling/lubrication methods for sustainable machining in turning of Haynes 25 superalloy. Journal of Cleaner Production, 133, 172-181. http://doi.org/10.1016/j.jclepro.2016.05.122
[20]. Shaw, M. C., Pigott, J. D., & Richardson, L. P. (1951). Effect of cutting fluid upon chip–tool interface temperature. Trans. ASME, 71(2), 45-56.
[21]. Siva, R. S., Lal, D. M., & Jaswin, M. A. (2015). Optimization of Deep Cryogenic Treatment Process for 100Cr6 bearing steel using the Grey- Taguchi Method. Tribology Transactions, 55(6), 854-862. http://doi.org/ 10.1080/10402004.2012.720002
[22]. Sohrabpoor, H., Khanghah, S. P., & Teimouri, R. (2014). Investigation of lubricant condition and machining parameters while turning of AISI 4340. The International Journal of Advanced Manufacturing Technology, 76(9-12), 2099-2116. http://doi.org/10.1007/s00170-014-6395-1