References
[1]. Bashir, F., & Porikli, F. (2006). Performance evaluation of object detection and tracking systems. In Proceedings 9th IEEE International Workshop on PETS (pp. 7-14). IEEE.
[2]. Benfold, B., & Reid, I. (2011, June). Stable multi-target
tracking in real-time surveillance video. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on (pp. 3457-3464). IEEE.
[3]. Bernardin, K., & Stiefelhagen, R. (2008). Evaluating
multiple object tracking performance: The CLEAR MOT
metrics. Journal on Image and Video Processing, 2008,
1-10.
[4]. Birchfield, S. T., & Rangarajan, S. (2005). Spatiograms
versus histograms for region-based tracking. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on (Vol. 2, pp. 1158-
1163). IEEE.
[5]. Brown, L. M., Senior, A. W., Tian, Y. L., Connell, J.,
Hampapur, A., Shu, C. F., ... & Lu, M. (2005). Performance
evaluation of sur veillance systems under var ying
conditions. In Proceedings of IEEE PETS Workshop (pp. 1-
8). IEEE.
[6]. Chau, D. P., Brémond, F., Thonnat, M., & Corvée, E.
(2011). Robust mobile object tracking based on multiple
feature similarity and trajectory filtering. In VISAPP11 (pp.
569-574).
[7]. Chu, D. M., & Smeulders, A. W. (2010). Thirteen hard
cases in visual tracking. In Advanced Video and Signal
Based Surveillance (AVSS), 2010 Seventh IEEE International
Conference on IEEE (pp. 103-110). IEEE.
[8]. Comaniciu, D., Ramesh, V., & Meer, P. (2003). Kernelbased
object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5), 564-577.
[9]. Corvee, E., & Bremond, F. (2011). Haar like and LBP
based features for face, head and people detection in
video sequences. In International Workshop on Behaviour
Analysis and Video Understanding (ICVS 2011) (p. 10).
[10]. Dadi, H. S., Pillutla, G. K. H., & Makkena, M. L.
(2017a). Human tracking using weighted running window
background model based GMM. i-manager's Journal on
Software Engineering, 12(2), 44-54.
[11]. Dadi, H. S., Pillutla, G. K. M., & Latha Makkena, M.
(2017b). Human tracking under severe occlusions. imanager's
Journal on Software Engineering, 12(1), 29-37.
[12]. Hager, G. D., Dewan, M., & Stewart, C. V. (2004).
Multiple kernel tracking with SSD. In Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings of
the 2004 IEEE Computer Society Conference on (Vol. 1,
pp. 1-10). IEEE.
[13]. Lee, D. S. (2005). Effective Gaussian mixture learning
for video background subtraction. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27(5), 827-
832.
[14]. Li, Y., Huang, C., & Nevatia, R. (2009). Learning to
associate: Hybridboosted multi-target tracker for
crowded scene. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on IEEE
(pp. 2953-2960). IEEE.
[15]. Nghiem, A. T., Bremond, F., Thonnat, M., & Ma, R.
(2007). A new evaluation approach for video processing
algorithms. In Motion and Video Computing, 2007.
WMVC'07. IEEE Workshop on (pp. 1-8). IEEE.
[16]. Paalanen, P., Kamarainen, J. K., Ilonen, J., &
Kälviäinen, H. (2006). Feature representation and
discrimination based on Gaussian Mixture Model
probability densities-practices and algorithms. Pattern
Recognition, 39(7), 1346-1358.
[17]. Rafael C. Gonzalez, Richard E. Woods, & Steven L.
Eddins. (2011). Digital Image Processing using MATLAB®,
nd 2 edition TMH Publications, New Delhi.
[18]. Ristani, E., Solera, F., Zou, R., Cucchiara, R., &
Tomasi, C. (2016). Performance measures and a data set
for multi-target, multi-camera tracking. In European
Conference on Computer Vision (pp. 17-35). Springer,
Cham.
[19]. Rosenholtz, R., Li, Y., & Nakano, L. (2007). Measuring
visual clutter. Journal of Vision, 7(2), 17-17.
[20]. Sankaranarayanan, S., Bremond, F., & Tax, D.
(2012). Qualitative evaluation of detection and tracking
performance. In Advanced Video and Signal-Based
Surveillance (AVSS), 2012 IEEE Ninth International
Conference on (pp. 362-367). IEEE.
[21]. Santosh, D. H., & Mohan, P. K. (2014a). Tracking
manifold objects in motion using Gaussian mixture model
and blob analysis. In IEEE International Conference on
Convergence of Technology-2014 (pp. 1-7). IEEE.
[22]. Santosh, D. H., & Mohan, P. K. (2014b). Multiple
objects tracking using extended Kalman Filter, GMM and
Mean Shift algorithm - A comparative study. In Advanced
Communication Control and Computing Technologies
(ICACCCT), 2014 International Conference on (pp. 1484-
1488). IEEE.
[23]. Santosh, D. H., & Mohan, P. K. (2015). Multiple human
tracking and prediction under severe occlusions using
GMM and Kalman filter. IJAER, 10(11), 29385-29404.
[24]. Wang, Y., Zhang, J., Wu, L., & Zhou, Z. (2010). Mean
shift tracking algorithm based on multi-feature space and
grey model. Journal of Computational Information
Systems, 6(11), 3731-3739.
[25]. Wu, H., Sankaranarayanan, A. C., & Chellappa, R.
(2010). Online empirical evaluation of tracking
algorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(8), 1443-1458.
[26]. Yao, J., & Odobez, J. M. (2008, October). Fast
Human Detection from Videos using Covariance
Features. In The Eighth International Workshop on Visual
Surveillance-VS2008.