References
[1]. Petersen, K. E. (1979). Micromechanical membrane
switches on silicon. IBM Journal of Research and
Development, 23(4), 376-385.
[2]. Rebeiz, G. M. (2004). RF MEMS: theory, design, and
technology. John Wiley & Sons.
[3]. Rebeiz, G. M., & Muldavin, J. B. (2001). RF MEMS
switches and switch circuits. IEEE Microwave magazine,
2(4), 59-71.
[4]. Nguyen, C. C., Katehi, L. P., & Rebeiz, G. M. (1998).
Micromachined devices for wireless communications.
Proceedings of the IEEE, 86(8), 1756-1768.
[5]. Fernández-Bolaños, M., Perruisseau-Carrier, J.,
Dainesi, P., & Ionescu, A. M. (2008). RF MEMS capacitive
switch on semi-suspended CPW using low-loss highresistivity
silicon substrate. Microelectronic Engineering,
85(5-6), 1039-1042.
[6]. Rebeiz, G. M., Patel, C. D., Han, S. K., Ko, C. H., & Ho, K.
M. (2013). The search for a reliable MEMS switch. IEEE
Microwave Magazine, 14(1), 57-67.
[7]. Kim, J., Herrault, F., Yu, X., Kim, M., Shafer, R. H., &
Allen, M. G. (2013). Microfabrication of air core power
inductors with metal-encapsulated polymer vias. Journal
of Micromechanics and Microengineering, 23(3),
035006.
[8]. Demirel, K., Yazgan, E., Demir, ?., & Ak?n, T. (2015).
C a n t i l e v e r t y p e r a d i o f r e q u e n c y
microelectromechanical systems shunt capacitive
s w i t c h d e s i g n a n d f a b r i c a t i o n . J o u r n a l o f
Micro/Nanolithography, MEMS, and MOEMS, 14(3),
035005.
[9]. Angira, M., & Rangra, K. (2015). Design and
investigation of a low insertion loss, broadband,
enhanced self and hold down power RF-MEMS switch.
Microsystem Technologies, 21(6), 1173-1178.
[10]. Yao, Z. J., Chen, S., Eshelman, S., Denniston, D., &
Goldsmith, C. (1999). Micromachined low-loss
microwave switches. Journal of Microelectromechanical
Systems, 8(2), 129-134.
[11]. Muldavin, J. B., & Rebeiz, G. M. (2000). High-isolation
CPW MEMS shunt switches. 2. Design. IEEE Transactions on
Microwave Theory and Techniques, 48(6), 1053-1056.
[12]. Lazaro, A., Girbau, D., Pradell, L., & Nebot, A. (2007).
Nonlinear actuation model for lateral electrostaticallyactuated
DC-contact RF MEMS series switches.
Microwave and Optical Technology Letters, 49(6), 1238-
1241.
[13]. Ruan, M., Shen, J., & Wheeler, C. B. (2001). Latching
m i c r o m a g n e t i c r e l a y s . J o u r n a l o f
Microelectromechanical Systems, 10(4), 511-517.
[14]. Ke, F., Miao, J., & Wang, Z. (2009). Ohmic series
radio-frequency microelectromechanical system switch
w i t h c o r r u g a t e d d i a p h r a g m . J o u r n a l o f
Micro/Nanolithography, MEMS, and MOEMS, 8(2),
021122.
[15]. Daneshmand, M., Fouladi, S., Mansour, R. R., Lisi, M.,
& Stajcer, T. (2009). Thermally actuated latching RF MEMS
switch and its characteristics. IEEE Transactions on
Microwave Theory and Techniques, 57(12), 3229-3238.
[16]. Bhatasana, P., Pujara, D., & Bera, S. C. (2015,
December). Movable parallel plate RF MEMS switch with
wide frequency response. In Applied Electromagnetics
Conference (AEMC), 2015 IEEE (pp. 1-2). IEEE.