The Impact of Substrate Doping Concentration on Electrical Characteristics of 45nm Nmos Device

Nitin Sachdeva*, Dr.Munish Vashishath**, Dr.P.K.Bansal***
Assistant Professor, Department of Electronics Engineering, Young Men’s Christian Association University of Science and Technology, Faridabad, India.
Professor, Department of Electronics Engineering, Young Men’s Christian Association University of Science and Technology, Faridabad, India
Ex-Principal, Department of Electronics Engineering, MMIT, Malout, India.
Periodicity:December - February'2018
DOI : https://doi.org/10.26634/jele.8.2.14136

Abstract

This paper explores the impact of lightly doped (LD) and heavily doped (HD) substrates on a Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with 40 nm Gate length. The influence of varying the p-type substrate doping 15 18 -3 concentration (from 10 to 10 cm ) is investigated in terms of the drain current, substrate current, sub-threshold current, on-off current ratio, sub-threshold swing and threshold voltage. The simulation results show that the lightly doped substrate devices with high work-function (wf) gives improved off-state leakage current. It has also been observed that LD devices have high drain current even on low gate oxide thickness. All the simulation and design work have been done in SILVACO TCAD software.

Keywords

SILVACO, Technology Computer Aided Design (TCAD) Software, Complementary Metal-Oxide Semiconductor (CMOS), Metal Oxide Semiconductor Field Effect Transistor (MOSFET), N-type Metal Oxide Semiconductor (NMOS).

How to Cite this Article?

Sachdeva. N., Munishvashishath and Bansal.P.K. (2018). The Impact of Substrate Doping Concentration on Electrical Characteristics of 45nm Nmos Device. i-manager's Journal on Electronics Engineering, 8(2), 20-26. https://doi.org/10.26634/jele.8.2.14136

References

[1]. Yang, L. A., Hao, Y., Yu, C. L., & Han, F. Y. (2006). An improved substrate current model for ultra-thin gate oxide MOSFETs. Solid-State Electronics, 50(3), 489-495.
[ 2 ] . International technology roadmap for semiconductor, 2011 retreived from http://public.itrs.net.
[3]. Nicollian, E. H., Brews, J. R., & Nicollian, E. H. (1982). MOS (metal oxide semiconductor) physics and technology (Vol. 1987). New York et al.: Wiley.
[4]. S.M. Sze, Physics of semiconductor Devices, Second ed, John Wiley & Sons, 2003.
[5]. Amin, S. I., Alam, M. S., & Khanam, R. Design Consideration and Effect of Parameter Variation on sub- 40nm Bulk MOSFET using TCAD Tool. International Journal of Electronics and Communication Engineering. ISSN, 0974-2166.
[6]. ATLAS Device simulator, SILVACO TCAD software, 2017.
[7]. Sachdeva, N., Vashishath, M., & Bansal, P. K. (2017). Analytical Modeling & Simulation of OFF-State Leakage Current for Lightly Doped MOSFETs.
[8]. Gupta, K. A., Anvekar, D. K., & Venkateswarlu, V. (2013). Modeling of Short Channel MOSFET Devices and Analysis of Design Aspects for Power Optimisation. International Journal of Modeling and Optimization, 3(3), 266
[9]. Kloes, A., Schwarz, M., & Holtij, T. (2012). $\hbox {MOS}^{3}$: A New Physics-Based Explicit Compact Model for Lightly Doped Short-Channel Triple-Gate SOI MOSFETs. IEEE Transactions on Electron Devices, 59(2), 349-358.
[10]. Sachdeva, N., Vashishath, M., & Bansal, P. K. (2017). Effect of Various Parameters on Threshold Voltage of Virtually Fabricated Lightly Doped PMOS Device. Journal of VLSI Design Tools & Technology, 7(3), 13-20.
[11]. Ch, A. B., Ravindra, J. V. R., & Lalkishore, K. (2015). Design of Ultra-Low Power PMOS and NMOS for Nano Scale VLSI Circuits. Circuits and Systems, 6(03), 60.
[12]. Pradipta Dutta, Binit Syamal, Kalyan Koley, "Shortchannel drain current model for asymmetric heavily/lightly doped DG mosfets" Pramana – J. Phys. (2017) 89:33.
[13]. Persson, K. M., Berg, M., Borg, M. B., Wu, J., Johansson, S., Svensson, J., ... & Wernersson, L. E. (2013). Extrinsic and intrinsic performance of vertical InAs nanowire MOSFETs on Si substrates. IEEE Transactions on Electron Devices, 60(9), 2761-2767.
[14]. Mehrotra, S. R., Kim, S., Kubis, T., Povolotskyi, M., Lundstrom, M. S., & Klimeck, G. (2013). Engineering Nanowire n-MOSFETs at $ L_ {g}< 8~{\rm nm}$. IEEE Transactions on Electron Devices, 60(7), 2171-2177.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.