References
[1]. Aach, T., & Kunz, D. (1996, September). Anisotropic
spectral magnitude estimation filters for noise reduction
and image enhancement. In Image Processing, 1996
Proceedings, International Conference on (Vol. 1, pp.
335-338). IEEE.
[2]. Aja-Fernández, S., Niethammer, M., Kubicki, M.,
Shenton, M. E., & Westin, C. F. (2008). Restoration of DWI
data using a Rician LMMSE estimator. IEEE Transactions on
Medical Imaging, 27(10), 1389-1403.
[3]. Chang, H. H., Li, C. Y., & Gallogly, A. H. (2018). Brain
MR Image Restoration using an Automatic Trilateral Filter
With GPU-based Acceleration. IEEE Transactions on
Biomedical Engineering, 65(2), 400-413.
[4]. Dolui, S., Kuurstra, A., Patarroyo, I. C. S., &
Michailovich, O. V. (2013). A new similarity measure for
non-local means filtering of MRI images. Journal of Visual
Communication and Image Representation, 24(7),
1040-1054.
[5]. Golshan, H. M., Hasanzadeh, R. P., & Yousefzadeh, S.
C. (2013). An MRI denoising method using image data
redundancy and local SNR estimation. Magnetic
Resonance Imaging, 31(7), 1206-1217.
[6]. Gopinathan, S., Kokila, R., & Thangavel, P. (2015).
Wavelet and FFT based image denoising using non-linear
filters. International Journal of Electrical and Computer
Engineering, 5(5), 1018-1026.
[7]. Krissian, K., & Aja-Fernández, S. (2009). Noise-driven
anisotropic diffusion filtering of MRI. IEEE Transactions on
Image Processing, 18(10), 2265-2274.
[8]. Manjón, J. V., Carbonell-Caballero, J., Lull, J. J.,
García-Martí, G., Martí-Bonmatí, L., & Robles, M. (2008).
MRI denoising using non-local means. Medical Image
Analysis, 12(4), 514-523.
[9]. Mohan, J., Krishnaveni, V., & Guo, Y. (2013). MRI
denoising using nonlocal neutrosophic set approach of
Wiener filtering. Biomedical Signal Processing and
Control, 8(6), 779-791.
[10]. Muresan, D. D., & Parks, T. W. (2003, September).
Adaptive principal components and image denoising. In
Image Processing. ICIP 2003. Proceedings, International
Conference on (Vol. 1, pp. I-101). IEEE.
[11]. Nowak, R. D. (1999). Wavelet-based Rician noise
removal for magnetic resonance imaging. IEEE
Transactions on Image Processing, 8(10), 1408-1419.
[12]. Perona, P., & Malik, J. (1990). Scale-space and edge
detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629-639.
[13]. Pizurica, A. (2002). Image denoising using wavelets
and spatial context modeling (Doctoral Dissertation,
Ghent University).
[14]. Pizurica, A., Philips, W., Lemahieu, I., & Acheroy, M.
(2003). A versatile wavelet domain noise filtration
technique for medical imaging. IEEE Transactions on
Medical Imaging, 22(3), 323-331.
[15]. Rajan, J., Arnold, J., & Sijbers, J. (2014). A new nonlocal
maximum likelihood estimation method for Rician
noise reduction in magnetic resonance images using the
Kolmogorov-Smirnov test. Signal Processing, 103(1), 16-23.
[16]. Rajan, J., Van Audekerke, J., Van der Linden, A.,
Verhoye, M., & Sijbers, J. (2012, May). An adaptive non
local maximum likelihood estimation method for
denoising magnetic resonance images. In Biomedical
Imaging (ISBI), 2012 9th IEEE International Symposium on
(pp. 1136-1139). IEEE.
[17]. Routray, S., Ray, A. K., & Mishra, C. (2017). MRI
Denoising using Sparse Based Curvelet Transform with
Variance Stabilizing Transformation Framework.
Indonesian Journal of Electrical Engineering and
Computer Science, 7(1), 116-122.
[18]. Sijbers, J., & Den Dekker, A. J. (2004). Maximum
likelihood estimation of signal amplitude and noise
variance from MR data. Magnetic Resonance in
Medicine, 51(3), 586-594.
[19]. Sijbers, J., Poot, D., den Dekker, A. J., & Pintjens, W.
(2007). Automatic estimation of the noise variance from the histogram of a magnetic resonance image. Physics in
Medicine & Biology, 52(5), 1335-1348.
[20]. Sudeep, P. V., Palanisamy, P., & Rajan, J. (2013,
December). A hybrid model for Rician noise reduction in
MRI. In Advanced Computing, Networking and Security
(ADCONS), 2013 2nd International Conference on (pp. 56-
61). IEEE.
[21]. Wong, A., & Mishra, A. K. (2011). Quasi-Monte Carlo
estimation approach for denoising MRI data based on
regional statistics. IEEE Transactions on Biomedical
Engineering, 58(4), 1076-1083.
[22]. Wood, J. C., & Johnson, K. M. (1999). Wavelet
packet denoising of magnetic resonance images:
importance of Rician noise at low SNR. Magnetic
Resonance in Medicine, 41(3), 631-635.
[23]. Xu, Y., Weaver, J. B., Healy, D. M., & Lu, J. (1994).
Wavelet transform domain filters: A spatially selective
noise filtration technique. IEEE Transactions on Image
Processing, 3(6), 747-758.
[24]. Yang, J., Fan, J., Ai, D., Zhou, S., Tang, S., & Wang, Y.
(2015). Brain MR image denoising for Rician noise using
pre-smooth non-local means filter. Biomedical
Engineering Online, 14(1), 1-20.
[25]. Yaroslavsky, L. P., Egiazarian, K. O., & Astola, J. T.
(2001, May). Transform domain image restoration
methods: review, comparison, and interpretation. In
Nonlinear Image Processing and Pattern Analysis XII (Vol.
4304, pp. 155-170). International Society for Optics and
Photonics.