Statistical Wavelet based Adaptive Noise Filtering Technique for MRI Modality

C. Anjanappa*, H. S. Sheshadri**
* Assistant Professor, Department of Electronics and Communication Engineering, The National Institute of Engineering, Mysore, Karnataka, India.
** Professor, Department of Electronics and Communication Engineering, People's Education Society College of Engineering, Mandya, Karnataka, India.
Periodicity:December - February'2018
DOI : https://doi.org/10.26634/jpr.4.4.14130

Abstract

In this research work, wavelet domain method is designed to filter noise in medical images. This method adapts to
various types of noise, which is dependent on the user or medical expert. Here, a single parameter can be used to
balance the preservation of relevant details and the level of noise reduction. This method needs the subsequent
information of the related image details across the resolution scales to perform a preliminary coefficient classification.
The statistical distributions of the coefficients can be estimated by using preliminary coefficient classification that
characterize the valuable image features and noise levels. Wavelet domain indicator is used to achieve the conversion
to the image features and noise level. The experimental results demonstrated noise suppression in Magnet Resonance
(MR) and Ultra Sound (US) images and its performance is validated by using quantitative and qualitative methods.

Keywords

Noise Reduction, Wavelets, High Angular Resolution Diffusion Imaging (HARDI) Data, Joint Detection and Estimation, Magnetic Resonance Imaging (MRI).

How to Cite this Article?

Anjanappa, C., and Sheshadri, H. S. (2018). Statistical Wavelet based Adaptive Noise Filtering Technique for MRI Modality. i-manager’s Journal on Pattern Recognition, 4(4), 21-31. https://doi.org/10.26634/jpr.4.4.14130

References

[1]. Aach, T., & Kunz, D. (1996, September). Anisotropic spectral magnitude estimation filters for noise reduction and image enhancement. In Image Processing, 1996 Proceedings, International Conference on (Vol. 1, pp. 335-338). IEEE.
[2]. Aja-Fernández, S., Niethammer, M., Kubicki, M., Shenton, M. E., & Westin, C. F. (2008). Restoration of DWI data using a Rician LMMSE estimator. IEEE Transactions on Medical Imaging, 27(10), 1389-1403.
[3]. Chang, H. H., Li, C. Y., & Gallogly, A. H. (2018). Brain MR Image Restoration using an Automatic Trilateral Filter With GPU-based Acceleration. IEEE Transactions on Biomedical Engineering, 65(2), 400-413.
[4]. Dolui, S., Kuurstra, A., Patarroyo, I. C. S., & Michailovich, O. V. (2013). A new similarity measure for non-local means filtering of MRI images. Journal of Visual Communication and Image Representation, 24(7), 1040-1054.
[5]. Golshan, H. M., Hasanzadeh, R. P., & Yousefzadeh, S. C. (2013). An MRI denoising method using image data redundancy and local SNR estimation. Magnetic Resonance Imaging, 31(7), 1206-1217.
[6]. Gopinathan, S., Kokila, R., & Thangavel, P. (2015). Wavelet and FFT based image denoising using non-linear filters. International Journal of Electrical and Computer Engineering, 5(5), 1018-1026.
[7]. Krissian, K., & Aja-Fernández, S. (2009). Noise-driven anisotropic diffusion filtering of MRI. IEEE Transactions on Image Processing, 18(10), 2265-2274.
[8]. Manjón, J. V., Carbonell-Caballero, J., Lull, J. J., García-Martí, G., Martí-Bonmatí, L., & Robles, M. (2008). MRI denoising using non-local means. Medical Image Analysis, 12(4), 514-523.
[9]. Mohan, J., Krishnaveni, V., & Guo, Y. (2013). MRI denoising using nonlocal neutrosophic set approach of Wiener filtering. Biomedical Signal Processing and Control, 8(6), 779-791.
[10]. Muresan, D. D., & Parks, T. W. (2003, September). Adaptive principal components and image denoising. In Image Processing. ICIP 2003. Proceedings, International Conference on (Vol. 1, pp. I-101). IEEE.
[11]. Nowak, R. D. (1999). Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Transactions on Image Processing, 8(10), 1408-1419.
[12]. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629-639.
[13]. Pizurica, A. (2002). Image denoising using wavelets and spatial context modeling (Doctoral Dissertation, Ghent University).
[14]. Pizurica, A., Philips, W., Lemahieu, I., & Acheroy, M. (2003). A versatile wavelet domain noise filtration technique for medical imaging. IEEE Transactions on Medical Imaging, 22(3), 323-331.
[15]. Rajan, J., Arnold, J., & Sijbers, J. (2014). A new nonlocal maximum likelihood estimation method for Rician noise reduction in magnetic resonance images using the Kolmogorov-Smirnov test. Signal Processing, 103(1), 16-23.
[16]. Rajan, J., Van Audekerke, J., Van der Linden, A., Verhoye, M., & Sijbers, J. (2012, May). An adaptive non local maximum likelihood estimation method for denoising magnetic resonance images. In Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on (pp. 1136-1139). IEEE.
[17]. Routray, S., Ray, A. K., & Mishra, C. (2017). MRI Denoising using Sparse Based Curvelet Transform with Variance Stabilizing Transformation Framework. Indonesian Journal of Electrical Engineering and Computer Science, 7(1), 116-122.
[18]. Sijbers, J., & Den Dekker, A. J. (2004). Maximum likelihood estimation of signal amplitude and noise variance from MR data. Magnetic Resonance in Medicine, 51(3), 586-594.
[19]. Sijbers, J., Poot, D., den Dekker, A. J., & Pintjens, W. (2007). Automatic estimation of the noise variance from the histogram of a magnetic resonance image. Physics in Medicine & Biology, 52(5), 1335-1348.
[20]. Sudeep, P. V., Palanisamy, P., & Rajan, J. (2013, December). A hybrid model for Rician noise reduction in MRI. In Advanced Computing, Networking and Security (ADCONS), 2013 2nd International Conference on (pp. 56- 61). IEEE.
[21]. Wong, A., & Mishra, A. K. (2011). Quasi-Monte Carlo estimation approach for denoising MRI data based on regional statistics. IEEE Transactions on Biomedical Engineering, 58(4), 1076-1083.
[22]. Wood, J. C., & Johnson, K. M. (1999). Wavelet packet denoising of magnetic resonance images: importance of Rician noise at low SNR. Magnetic Resonance in Medicine, 41(3), 631-635.
[23]. Xu, Y., Weaver, J. B., Healy, D. M., & Lu, J. (1994). Wavelet transform domain filters: A spatially selective noise filtration technique. IEEE Transactions on Image Processing, 3(6), 747-758.
[24]. Yang, J., Fan, J., Ai, D., Zhou, S., Tang, S., & Wang, Y. (2015). Brain MR image denoising for Rician noise using pre-smooth non-local means filter. Biomedical Engineering Online, 14(1), 1-20.
[25]. Yaroslavsky, L. P., Egiazarian, K. O., & Astola, J. T. (2001, May). Transform domain image restoration methods: review, comparison, and interpretation. In Nonlinear Image Processing and Pattern Analysis XII (Vol. 4304, pp. 155-170). International Society for Optics and Photonics.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.