o electrical angle. It remains low for next 180o electrical angle. The Hall sensor output shows a phase shift of 120o in each signal. Designated algorithm exhibits that frequency of gating pulses strongly depends upon the frequency of emulated hall sensor. The present study can provide significant information in the analysis of Voltage Source Inverter without connecting the PMBLDC motor. Effectiveness of the proposed method are validated and proved by experimental data.
">In this paper, authors are reporting the generation of gating pulses for Voltage Source Inverter using microcontroller to drive PMBLDC motor. Gating pulse generation takes places with the help of emulated hall sensor output. These Hall sensor signal produced by microcontroller remain high for 180o electrical angle. It remains low for next 180o electrical angle. The Hall sensor output shows a phase shift of 120o in each signal. Designated algorithm exhibits that frequency of gating pulses strongly depends upon the frequency of emulated hall sensor. The present study can provide significant information in the analysis of Voltage Source Inverter without connecting the PMBLDC motor. Effectiveness of the proposed method are validated and proved by experimental data.