Significant improvement in the Piezoelectric properties of PZT / PVB composites by inclusion of ZnO nano-particles and its behaviour near percolation threshold

Vinod Kumar Soni*, P. Nanda**, Dhiraj Saxena***
* Research Fellow, Department of Physics, Jai Narain Vyas University, Jodhpur, India.
** Faculty Member, Lachoo Memorial College of Science and Technology Jodhpur affiliated to J.N.V. University Jodhpur, India.
*** Associate Professor, Lachoo Memorial College of Science and Technology, Jodhpur affiliated to J.N.V. University Jodhpur, India.
Periodicity:April - June'2018
DOI : https://doi.org/10.26634/jms.6.1.14115

Abstract

Composites comprising of an active phase of ferroelectric ceramic and a polymer matrix have recently found numerous sensory and energy storage applications. However, it remains a major challenge to further improve their dielectric and electromechanical response at low loading of ceramics without losing their flexibility. The objective of this research work is to prepare three-phase flexible composites by incorporation of ZnO nanoparticles with various weight fractions into ceramic –polymer matrix, and analyzing the effect of these nano-fillers for optimizing piezoelectric and dielectric properties for various applications. This research aims at employing ZnO nanoparticles to develop highly sensitive piezoelectric composites for vibration / pressure sensing applications and electric energy storage devices by virtue of their significant dielectric and piezoelectric properties. Three phase composites consisting of Polyvinylbutyral (PVB) as host polymer matrix, ceramic Lead Zirconate Titanate (PZT) as active piezoelectric phase and ZnO nanoparticles as third phase with vol% ranging from 1% to 12% were prepared using hot-press technique. The structural analysis of three phase composites PVB/PZT/ZnO were carried out by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). Addition of ZnO nanoparticles forms a percolative network in the composites resulting in enhancement of the electrical conductivity. The percolation threshold was obtained at 6 vol% of ZnO nanoparticles. A significant increase in the piezoelectric properties (d from 25 pC/N to 180 pC/N) of the composites was 33 obtained just near the percolation threshold. ZnO nanoparticles contribute to piezoelectric coefficient by virtue of its noncentro symmetric structure and also by facilitating effective DC poling due to the creation of percolative continuity near percolation threshold. Variation of AC conductivity with frequency and temperature near percolation threshold suggests that hopping and tunneling are the dominating conduction mechanisms in these three phase composites. Experimental results were explained in the percolation transition region using percolation theory and models. These composites are flexible and can be fabricated into various shapes.

Keywords

Three phase percolative composites, Polymer Nano-Composites, Percolation threshold, ZnO nano-particles, piezoelectric properties, AC conductivity.

How to Cite this Article?

Soni, V. K., Manmeeta., and Saxena, D. (2018). Significant improvement in the Piezoelectric properties of PZT / PVB composites by inclusion of ZnO nano-particles and its behaviour near percolation threshold. i-manager’s Journal on Material Science, 6(1), 8-19. https://doi.org/10.26634/jms.6.1.14115

References

[1]. Balberg, I., Azulay, D., Toker, D., & Millo, O. (2004). Percolation and tunneling in composite materials. International Journal of Modern Physics B, 18(15), 2091- 2121.
[2]. Batra, A. K., Edwards, M. E., Alomari, A., & Elkhaldy, A. (2015). Dielectric behavior of P (VDF-TrFE)/PZT nanocomposites films doped with multi-walled carbon nanotubes (MWCNT). American Journal of Materials Science, 5(3A), 55-61.
[3]. Dang, Z. M., Fan, L. Z., Shen, Y., & Nan, C. W. (2003). Study on dielectric behavior of a three-phase CF/(PVDF+ BaTiO3 ) composite. Chemical Physics Letters, 369(1-2), 95-100.
[4]. Das-Gupta, D. K., & Abdullah, M. J. (1988). Dielectric and pyroelectric properties of polymer/ceramic composites. Journal of Materials Science Letters, 7(2), 167-170.
[5]. Deepa, K. S., Sebastian, M. T., & James, J. (2007). Effect of interparticle distance and interfacial area on the properties of insulator-conductor composites. Applied Physics Letters, 91(20), 202904.
[6]. Furukawa, T., Ishida, K., & Fukada, E. (1979). Piezoelectric properties in the composite systems of polymers and PZT ceramics. Journal of Applied Physics, 50(7), 4904-4912.
[7]. George, S., & Sebastian, M. T. (2009). Three-phase polymer–ceramic–metal composite for embedded capacitor applications. Composites Science and Technology, 69(7-8), 1298-1302.
[8]. George, S., James, J., & Sebastian, M. T. (2007). Giant permittivity of a bismuth zinc niobate–silver composite. Journal of the American Ceramic Society, 90(11), 3522- 3528.
[9]. Gong, H., Zhang, Y., Quan, J., & Che, S. (2011). Preparation and properties of cement based piezoelectric composites modified by CNTs. Current Applied Physics, 11(3), 653-656.
[10]. Gubbels F., Blacher S., Vanlathem E., Jerome R., & Deltour R. (1995). Design of electrical conductive composites - key role of the morphology on the electricalproperties of carbon-black filled polymer blends. Macromolecules, 28, 1559-1566.
[11]. Ioannou, G., Patsidis, A., & Psarras, G. C. (2011). Dielectric and functional properties of polymer matrix/ZnO/BaTiO3 hybrid composites. Composites Part A: Applied Science and Manufacturing, 42(1), 104-110.
[12]. Karttunen, M., Ruuskanen, P., Pitkänen, V., & Albers, W. M. (2008). Electrically conductive metal polymer nanocomposites for electronics applications. Journal of Electronic Materials, 37(7), 951-954.
[13]. Kim, K. H., & Jo, W. H. (2009). A strategy for enhancement of mechanical and electrical properties of polycarbonate/ multi-walled carbon nanotube composites. Carbon, 47(4), 1126-1134.
[14]. Li, H. B., Li, Y., Wang, D. W., Lu, R., Yuan, J., & Cao, M. S. (2013). Effects of ZnO nanoneedles addition on the mechanical and piezoelectric properties of hard PZTassociated based composites. Journal of Materials Science: Materials in Electronics, 24(5), 1463-1468.
[15]. Liu, X. F., Xiong, C. X., Sun, H. J., Dong, L. J., & Liu, Y. (2006). Piezoelectric and dielectric properties of PZT/PVC and graphite doped with PZT/PVC composites. Materials Science and Engineering: B, 127(2-3), 261-266.
[16]. Lopes, A. C., Costa, C. M., i Serra, R. S., Neves, I. C., Ribelles, J. G., & Lanceros-Méndez, S. (2013). Dielectric relaxation, AC conductivity and electric modulus in poly (vinylidene fluoride)/NaY zeolite composites. Solid State Ionics, 235, 42-50.
[17]. Ma, M., & Wang, X. (2009). Preparation, microstructure and properties of epoxy-based composites containing carbon nano tubes and PMN-PZT piezoceramics as rigid piezo-damping materials. Materials Chemistry and Physics, 116(1), 191-197.
[18]. Mamunya, Y., Boudenne, A., Lebovka, N., Ibos, L., Candau, Y., & Lisunova, M. (2008). Electrical and thermo physical behaviour of PVC-MWCNT nanocomposites. Composites Science and Technology, 68(9), 1981-1988.
[19]. Minne, S. C., Manalis, S. R., & Quate, C. F. (1995). Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Applied Physics Letters, 67(26), 3918-3920.
[20]. Moharana, S., & Mahaling, R. N. (2017). Novel three phase polyvinyl alcohol (PVA)-nanographite (GNP)-Pb (ZrTi)O3 (PZT) composites with high dielectric permittivity. Materials Research Innovations, 22(5), 254-260.
[21]. Nan, C. W. (1993). Physics of inhomogeneous inorganic materials. Progress in Materials Science, 37(1), 1- 116.
[22]. Nan, C. W., Shen, Y., & Ma, J. (2010). Physical properties of composites near percolation. Annual Review of Materials Research, 40, 131-151.
[23]. Newnham, R. E., Skinner, D. P., Klicker, K. A., Bhalla, A. S., Hardiman, B., & Gururaja, T. R. (1980). Ferroelectric ceramic-plastic composites for piezoelectric and pyroelectric applications. Ferroelectrics, 27(1), 49-55.
[24]. Pegel, S., Pötschke, P., Petzold, G., Alig, I., Dudkin, S. M., & Lellinger, D. (2008). Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer, 49(4), 974-984.
[25]. Safari, A., Lee, Y. H., Halliyal, A., & Newnham, R. E. (1987). O-3 Piezoelectric composites prepared by coprecipitated PbTiO3 powder. American Ceramic Society Bulletin, 66(4), 668-670.
[26]. Sakamoto, W. K., Marin-Franch, P., & Das-Gupta, D. K. (2002). Characterization and application of PZT/PU and graphite doped PZT/PU composite. Sensors and Actuators A: Physical, 100(2-3), 165-174.
[27]. Sanches, A. O., Kanda, D. H. F., Malmonge, L. F., da Silva, M. J., Sakamoto, W. K., & Malmonge, J. A. (2017). Synergistic effects on polyurethane/lead zirconate titanate/carbon black three-phase composites. Polymer Testing, 60, 253-259.
[28]. Schadler, L. S., Wang, X., Nelson, J. K., & Hillborg, H. (2010). Non-linear field grading materials and carbon nanotube nanocomposites with controlled conductivity. In Nelson, K. (Ed.), Dielectric Polymer Nanocomposites (pp. 259-284). Springer, Boston, MA.
[29]. Seo, J. J., Kuk, S. T., & Kim, K. (1997). Thermal decomposition of PVB (polyvinyl butyral) binder in the matrix and electrolyte of molten carbonate fuel cells. Journal of Power Sources, 69(1-2), 61-68.
[30]. Shang, J., Zhang, Y., Yu, L., Shen, B., Lv, F., & Chu, P. K. (2012). Fabrication and dielectric properties of oriented polyvinylidene fluoride nanocomposites incorporated with graphene nanosheets. Materials Chemistry and Physics, 134(2-3), 867-874.
[31]. Shen Y., Yue Z. X., Li M., & Nan C. W. (2005). Enhanced Initial Permeability and Dielectric Constant in a Double‐Percolating Ni0.3 Zn0.7Fe1.95O4–Ni–Polymer  Composite. Advanced Functional Materials, 15(7), 1100- 1103.
[32]. Shi, D. L., Feng, X. Q., Huang, Y. Y., Hwang, K. C., & Gao, H. (2004). The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. Journal of Engineering Materials and Technology, 126(3), 250-257.
[33]. Singh, R., Kumar, J., Singh, R. K., Kaur, A., Sinha, R. D. P., & Gupta, N. P. (2006). Low frequency ac conduction and dielectric relaxation behavior of solution grown and uniaxially stretched poly (vinylidene fluoride) films. Polymer, 47(16), 5919-5928.
[34]. Tian, S., & Wang, X. (2008). Fabrication and performances of epoxy/multi-walled carbon nanotubes/piezoelectric ceramic composites as rigid piezo-damping materials. Journal of Materials Science, 43(14), 4979-4987.
[35]. Toker, D., Azulay, D., Shimoni, N., Balberg, I., & Millo, O. (2003). Tunneling and percolation in metal-insulator composite materials. Physical Review B, 68(4), 041403.
[36]. Trionfi, A., Scrymgeour, D. A., Hsu, J. W., Arlen, M. J., Tomlin, D., Jacobs, J. D., ... & Vaia, R. A. (2008). Direct imaging of current paths in multiwalled carbon nanofiber polymer nanocomposites using conducting-tip atomic force microscopy. Journal of Applied Physics, 104(8), 083708.
[37]. Tsantzalis, S., Karapappas, P., Vavouliotis, A., Tsotra, P., Paipetis, A., Kostopoulos, V., & Friedrich, K. (2007). Enhancement of the mechanical performance of an epoxy resin and fiber reinforced epoxy resin composites by the introduction of CNF and PZT particles at the microscale. Composites Part A: Applied Science and Manufacturing, 38(4), 1076-1081.
[38]. Wang, G. (2010). Enhanced dielectric properties of three-phase-percolative composites based on thermoplastic-ceramic matrix (BaTiO3 + PVDF) and ZnO radial nanostructures. ACS Applied Materials & Interfaces, 2(5), 1290-1293.
[39]. Wang, L., & Dang, Z. M. (2005). Carbon nanotube composites with high dielectric constant at low percolation threshold. Applied Physics Letters, 87(4), 042903.
[40]. Xu, J., & Wong, C. P. (2005). Low-loss percolative dielectric composite. Applied Physics Letters, 87(8), 082907.
[41]. Zallen R. (1983). The Physics of Amorphous Solids. John Wiley & Sons.
[42]. Zhang, X., Ma, Y., Zhao, C., & Yang, W. (2015). High dielectric performance composites with a hybrid BaTiO /graphene as filler and poly (vinylidene fluoride) as 3 matrix. ECS Journal of Solid State Science and Technology, 4(5), N47-N54.
[43]. Zhang, Y., Wang, E., Li, H., Cai, Y., & Zhang, J. (2015). Enhanced electrical properties in O–3 pyroelectric composites doped with nano carbon black powder. Journal of Materials Science: Materials in Electronics, 26(1), 37-41.
[44]. Zheng, W., & Wong, S. C. (2003). Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Composites Science and Technology, 63(2), 225-235.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.