References
[1]. Balberg, I., Azulay, D., Toker, D., & Millo, O. (2004). Percolation and tunneling in composite materials. International Journal of Modern Physics B, 18(15), 2091- 2121.
[2]. Batra, A. K., Edwards, M. E., Alomari, A., & Elkhaldy, A. (2015). Dielectric behavior of P (VDF-TrFE)/PZT nanocomposites films doped with multi-walled carbon nanotubes (MWCNT). American Journal of Materials Science, 5(3A), 55-61.
[3]. Dang, Z. M., Fan, L. Z., Shen, Y., & Nan, C. W. (2003). Study on dielectric behavior of a three-phase CF/(PVDF+ BaTiO3 ) composite. Chemical Physics Letters, 369(1-2), 95-100.
[4]. Das-Gupta, D. K., & Abdullah, M. J. (1988). Dielectric and pyroelectric properties of polymer/ceramic composites. Journal of Materials Science Letters, 7(2), 167-170.
[5]. Deepa, K. S., Sebastian, M. T., & James, J. (2007). Effect of interparticle distance and interfacial area on the properties of insulator-conductor composites. Applied Physics Letters, 91(20), 202904.
[6]. Furukawa, T., Ishida, K., & Fukada, E. (1979). Piezoelectric properties in the composite systems of polymers and PZT ceramics. Journal of Applied Physics, 50(7), 4904-4912.
[7]. George, S., & Sebastian, M. T. (2009). Three-phase polymer–ceramic–metal composite for embedded capacitor applications. Composites Science and Technology, 69(7-8), 1298-1302.
[8]. George, S., James, J., & Sebastian, M. T. (2007). Giant permittivity of a bismuth zinc niobate–silver composite. Journal of the American Ceramic Society, 90(11), 3522- 3528.
[9]. Gong, H., Zhang, Y., Quan, J., & Che, S. (2011). Preparation and properties of cement based piezoelectric composites modified by CNTs. Current Applied Physics, 11(3), 653-656.
[10]. Gubbels F., Blacher S., Vanlathem E., Jerome R., & Deltour R. (1995). Design of electrical conductive composites - key role of the morphology on the electricalproperties of carbon-black filled polymer blends. Macromolecules, 28, 1559-1566.
[11]. Ioannou, G., Patsidis, A., & Psarras, G. C. (2011). Dielectric and functional properties of polymer matrix/ZnO/BaTiO3 hybrid composites. Composites Part A: Applied Science and Manufacturing, 42(1), 104-110.
[12]. Karttunen, M., Ruuskanen, P., Pitkänen, V., & Albers, W. M. (2008). Electrically conductive metal polymer nanocomposites for electronics applications. Journal of Electronic Materials, 37(7), 951-954.
[13]. Kim, K. H., & Jo, W. H. (2009). A strategy for enhancement of mechanical and electrical properties of polycarbonate/ multi-walled carbon nanotube composites. Carbon, 47(4), 1126-1134.
[14]. Li, H. B., Li, Y., Wang, D. W., Lu, R., Yuan, J., & Cao, M. S. (2013). Effects of ZnO nanoneedles addition on the mechanical and piezoelectric properties of hard PZTassociated based composites. Journal of Materials Science: Materials in Electronics, 24(5), 1463-1468.
[15]. Liu, X. F., Xiong, C. X., Sun, H. J., Dong, L. J., & Liu, Y. (2006). Piezoelectric and dielectric properties of PZT/PVC and graphite doped with PZT/PVC composites. Materials Science and Engineering: B, 127(2-3), 261-266.
[16]. Lopes, A. C., Costa, C. M., i Serra, R. S., Neves, I. C., Ribelles, J. G., & Lanceros-Méndez, S. (2013). Dielectric relaxation, AC conductivity and electric modulus in poly (vinylidene fluoride)/NaY zeolite composites. Solid State Ionics, 235, 42-50.
[17]. Ma, M., & Wang, X. (2009). Preparation, microstructure and properties of epoxy-based composites containing carbon nano tubes and PMN-PZT piezoceramics as rigid piezo-damping materials. Materials Chemistry and Physics, 116(1), 191-197.
[18]. Mamunya, Y., Boudenne, A., Lebovka, N., Ibos, L., Candau, Y., & Lisunova, M. (2008). Electrical and thermo physical behaviour of PVC-MWCNT nanocomposites. Composites Science and Technology, 68(9), 1981-1988.
[19]. Minne, S. C., Manalis, S. R., & Quate, C. F. (1995). Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Applied Physics Letters, 67(26), 3918-3920.
[20]. Moharana, S., & Mahaling, R. N. (2017). Novel three phase polyvinyl alcohol (PVA)-nanographite (GNP)-Pb (ZrTi)O3 (PZT) composites with high dielectric permittivity. Materials Research Innovations, 22(5), 254-260.
[21]. Nan, C. W. (1993). Physics of inhomogeneous inorganic materials. Progress in Materials Science, 37(1), 1- 116.
[22]. Nan, C. W., Shen, Y., & Ma, J. (2010). Physical properties of composites near percolation. Annual Review of Materials Research, 40, 131-151.
[23]. Newnham, R. E., Skinner, D. P., Klicker, K. A., Bhalla, A. S., Hardiman, B., & Gururaja, T. R. (1980). Ferroelectric ceramic-plastic composites for piezoelectric and pyroelectric applications. Ferroelectrics, 27(1), 49-55.
[24]. Pegel, S., Pötschke, P., Petzold, G., Alig, I., Dudkin, S. M., & Lellinger, D. (2008). Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer, 49(4), 974-984.
[25]. Safari, A., Lee, Y. H., Halliyal, A., & Newnham, R. E. (1987). O-3 Piezoelectric composites prepared by coprecipitated PbTiO3 powder. American Ceramic Society Bulletin, 66(4), 668-670.
[26]. Sakamoto, W. K., Marin-Franch, P., & Das-Gupta, D. K. (2002). Characterization and application of PZT/PU and graphite doped PZT/PU composite. Sensors and Actuators A: Physical, 100(2-3), 165-174.
[27]. Sanches, A. O., Kanda, D. H. F., Malmonge, L. F., da Silva, M. J., Sakamoto, W. K., & Malmonge, J. A. (2017). Synergistic effects on polyurethane/lead zirconate titanate/carbon black three-phase composites. Polymer Testing, 60, 253-259.
[28]. Schadler, L. S., Wang, X., Nelson, J. K., & Hillborg, H. (2010). Non-linear field grading materials and carbon nanotube nanocomposites with controlled conductivity. In Nelson, K. (Ed.), Dielectric Polymer Nanocomposites (pp. 259-284). Springer, Boston, MA.
[29]. Seo, J. J., Kuk, S. T., & Kim, K. (1997). Thermal decomposition of PVB (polyvinyl butyral) binder in the matrix and electrolyte of molten carbonate fuel cells. Journal of Power Sources, 69(1-2), 61-68.
[30]. Shang, J., Zhang, Y., Yu, L., Shen, B., Lv, F., & Chu, P. K. (2012). Fabrication and dielectric properties of oriented polyvinylidene fluoride nanocomposites incorporated with graphene nanosheets. Materials Chemistry and Physics, 134(2-3), 867-874.
[31]. Shen Y., Yue Z. X., Li M., & Nan C. W. (2005). Enhanced Initial Permeability and Dielectric Constant in a Double‐Percolating Ni0.3 Zn0.7Fe1.95O4–Ni–Polymer Composite. Advanced Functional Materials, 15(7), 1100- 1103.
[32]. Shi, D. L., Feng, X. Q., Huang, Y. Y., Hwang, K. C., & Gao, H. (2004). The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. Journal of Engineering Materials and Technology, 126(3), 250-257.
[33]. Singh, R., Kumar, J., Singh, R. K., Kaur, A., Sinha, R. D. P., & Gupta, N. P. (2006). Low frequency ac conduction and dielectric relaxation behavior of solution grown and uniaxially stretched poly (vinylidene fluoride) films. Polymer, 47(16), 5919-5928.
[34]. Tian, S., & Wang, X. (2008). Fabrication and performances of epoxy/multi-walled carbon nanotubes/piezoelectric ceramic composites as rigid piezo-damping materials. Journal of Materials Science, 43(14), 4979-4987.
[35]. Toker, D., Azulay, D., Shimoni, N., Balberg, I., & Millo, O. (2003). Tunneling and percolation in metal-insulator composite materials. Physical Review B, 68(4), 041403.
[36]. Trionfi, A., Scrymgeour, D. A., Hsu, J. W., Arlen, M. J., Tomlin, D., Jacobs, J. D., ... & Vaia, R. A. (2008). Direct imaging of current paths in multiwalled carbon nanofiber polymer nanocomposites using conducting-tip atomic force microscopy. Journal of Applied Physics, 104(8), 083708.
[37]. Tsantzalis, S., Karapappas, P., Vavouliotis, A., Tsotra, P., Paipetis, A., Kostopoulos, V., & Friedrich, K. (2007). Enhancement of the mechanical performance of an epoxy resin and fiber reinforced epoxy resin composites by the introduction of CNF and PZT particles at the microscale. Composites Part A: Applied Science and Manufacturing, 38(4), 1076-1081.
[38]. Wang, G. (2010). Enhanced dielectric properties of three-phase-percolative composites based on thermoplastic-ceramic matrix (BaTiO3 + PVDF) and ZnO radial nanostructures. ACS Applied Materials & Interfaces, 2(5), 1290-1293.
[39]. Wang, L., & Dang, Z. M. (2005). Carbon nanotube composites with high dielectric constant at low percolation threshold. Applied Physics Letters, 87(4), 042903.
[40]. Xu, J., & Wong, C. P. (2005). Low-loss percolative dielectric composite. Applied Physics Letters, 87(8), 082907.
[41]. Zallen R. (1983). The Physics of Amorphous Solids. John Wiley & Sons.
[42]. Zhang, X., Ma, Y., Zhao, C., & Yang, W. (2015). High dielectric performance composites with a hybrid BaTiO /graphene as filler and poly (vinylidene fluoride) as 3 matrix. ECS Journal of Solid State Science and Technology, 4(5), N47-N54.
[43]. Zhang, Y., Wang, E., Li, H., Cai, Y., & Zhang, J. (2015). Enhanced electrical properties in O–3 pyroelectric composites doped with nano carbon black powder. Journal of Materials Science: Materials in Electronics, 26(1), 37-41.
[44]. Zheng, W., & Wong, S. C. (2003). Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Composites Science and Technology, 63(2), 225-235.