References
[1]. Ariana, D., Guyer, D. E., & Shrestha, B. (2006).
Integrating multispectral reflectance and fluorescence
imaging for defect detection on apples. Computers and
Electronics in Agriculture, 50(2), 148-161.
[2]. Dubey, S. R., & Jalal, A. S. (2012, November).
Detection and classification of apple fruit diseases using
complete local binary patterns. In Computer and Communication Technology (ICCCT), 2012 Third
International Conference on (pp. 346-351). IEEE.
[3]. Garrido-Novell, C., Pérez-Marin, D., Amigo, J. M.,
Fernández-Novales, J., Guerrero, J. E., & Garrido-Varo, A.
(2012). Grading and color evolution of apples using RGB
and hyperspectral imaging vision cameras. Journal of
Food Engineering, 113(2), 281-288.
[4]. Gonzalez, R. C., & Woods, R. E. (2008). Digital Image
rd Processing, 3 Ed. Pearson.
[5]. Hariharan, G. T., Hariharan, G. P. S., & Anandh, V, R.
(2016). Crop disease identification using image
processing. International Journal of Latest Trends in
Engineering & Technology, 6(4), 20-40.
[ 6 ] . Hawkson, E . E . , & N g n e n b , T. ( 2 0 1 5 ) .
Graphic.com.gh. Retrieved from http://www.graphic.
com.gh/news/general-news/ghanaloses-30-per-cent-ofcrop-
yields-to-pests-diseases.html
[7]. Jhuria, M., Kumar, A., & Borse, R. (2013, December).
Image processing for smart farming: Detection of disease
and fruit grading. In Image Information Processing (ICIIP),
2013 IEEE Second International Conference on (pp. 521-
526). IEEE.
[8]. Khairnar, K., & Dagade, R. (2014). Disease detection
and diagnosis on plant using image processing - A
Review. International Journal of Computer Applications,
108(13), 36-38.
[9]. Leemans, V., & Destain, M. F. (2004). A real-time
grading method of apples based on features extracted
from defects. Journal of Food Engineering, 61(1), 83-89.
[10]. Mukherjee, M., Pal, T., & Samanta, D. (2012).
Damaged paddy leaf detection using image processing. International Journal of Global Research in
Computer Science, 3(10), 07-10.
[11]. Nti, I. K., Eric, G., & Jonas, Y. S. (2017). Detection of
plant leaf disease employing image processing and
gaussian Smoothing Approach. International Journal of
Computer Applications, 162(2), 20-25.
[12]. Phadikar, S., & Sil, J. (2008, December). Rice disease
identification using pattern recognition techniques. In
Computer and Information Technology, 2008. ICCIT
th 2008. 11 International Conference on (pp. 420-423).
IEEE.
[13]. Prasad, S., Peddoju, S. K., & Ghosh, D. (2014, April).
Energy efficient mobile vision system for plant leaf disease
identification. In Wireless Communications and
Networking Conference (WCNC), 2014 IEEE (pp. 3314-
3319). IEEE.
[14]. Shete, S., Gonsalves, T., & Jalihal, D. (2016, March).
Image analysis for network based Agri Advisory System. In
Communication (NCC), 2016 Twenty Second National
Conference on (pp. 1-6). IEEE.
[15]. Singh, V., & Misra, A. K. (2017). Detection of plant leaf
diseases using image segmentation and soft computing
techniques. Information Processing in Agriculture, 4(1),
41-49.
[16]. Unay, D., Gosselin, B., Kleynen, O., Leemans, V.,
Destain, M. F., & Debeir, O. (2011). Automatic grading of
Bi-colored apples by multispectral machine vision.
Computers and Electronics in Agriculture, 75(1), 204-
212.