References
[1]. Angira, R., & Santosh, A. (2007). Optimization of dynamic systems: A trigonometric differential evolution approach. Computers & Chemical Engineering, 31(9), 1055-1063.
[2]. Angira, R., & Babu, B. V. (2006a). Optimization of process synthesis and design problems: A modified differential evolution approach. Chemical Engineering Science, 61(14), 4707-4721.
[3]. Angira, R., & Babu, B. V. (2006b). Performance of modified differential evolution for optimal design of complex and non-linear chemical processes. Journal of Experimental & Theoretical Artificial Intelligence, 18(4), 501-512.
[4]. Angira, R., & Babu, B. V. (2006c). Multi-Objective optimization using Modified Differential Evolution (MDE). International Journal of Mathematical Sciences: Special Issue on Recent Trends in Computational Mathematics and Its Applications, 5(2), 371-387.
[5]. Babu, B. V. (2004). Process Plant Simulation. Oxford University Press, USA.
[6]. Babu, B. V., & Angira, R. (2005). Optimal design of an auto-thermal ammonia synthesis reactor. Computers & Chemical Engineering, 29(5), 1041-1045.
[7]. Babu, B. V., & Angira, R. (2006). Modified Differential Evolution (MDE) for optimization of non-linear chemical processes. Computers & Chemical Engineering, 30(6-7), 989-1002.
[8]. Babu, B. V., Chakole, P. G., & Mubeen, J. S. (2005a). Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor. Chemical Engineering Science, 60(17), 4822-4837.
[9]. Babu, B. V., Chakole, P. G., & Syed Mubeen, J. H. (2005b). Differential evolution strategy for optimal design of gas transmission network. Multidiscipline Modeling in Materials and Structures, 1(4), 315-328.
[10]. Babu, B. V. (2007). Improved differential evolution for single and multiobjective optimization: MDE, MODE, NSDE, and MNSDE. In Deb, K., Chakroborty, P., Iyengar, N. G. R., & Gupta, S. K. (Ed.), Advances in Computational Optimization and its Applications (pp. 24-30). Universities Press, Hyderabad.
[11]. Babu, B. V., & Angira, R. (2006). Modified differential evolution (MDE) for optimization of non-linear chemical processes. Computers & Chemical Engineering, 30(6-7), 989-1002.
[12]. Babu, B. V., & Gujarathi, A. M. (2007a). Elitist-Multiobjective differential evolution (E-MODE) algorithm for multi-objective optimization. In Proc. of 3rd Indian International Conference on Artificial Intelligence (IICAI- 2007) (pp. 441-449).
[13]. Babu, B. V., & Gujarathil, A. M. (2007b). Multiobjective differential evolution (MODE) for optimization of supply chain planning and management. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on (pp. 2732-2739). IEEE.
[14]. Babu, B. V., & Gujarathi, A. M. (2007c). Multiobjective differential evolution (MODE) algorithm for multiobjective optimization: Parametric study on benchmark test problems. Journal on Future Engineering and Technology, 3(1), 47-59.
[15]. Babu, B. V., & Gujarathi, A. M. (2008). Hybrid multiobjective differential evolution (H-MODE) for multiobjective optimization. In Computational Intelligence in Expensive Optimization Problems, Edited by Chi-Keong Yoel and Chi-Keong G. O. H. Springer-Verlag, Germany, Communicated.
[16]. Babu, B. V., Gujarathi, A. M., Katla, P., & Laxmi, V. B. (2007a). Strategies of multi-objective differential evolution (MODE) for optimization of adiabatic styrene reactor. In Proceedings of the International Conference on Emerging Mechanical Technology: Macro to Nano < (EMTMN-2007) (p. 243).
[17]. Babu, B. V., Mubeen, J. S., & Chakole, P. G. (2007b). Simulation and optimization of wiped-film poly-ethylene terephthalate (PET) reactor using multiobjective differential evolution(MODE).Materials and Manufacturing Processes, 22(5), 541-552.
[18]. Babu, B. V., & Jehan, M. M. L. (2003). Differential evolution for multi-objective optimization. In Evolutionary Computation, 2003. CEC'03. The 2003 Congress on (Vol. 4, pp. 2696-2703). IEEE.
[19]. Babu, B. V., & Khan, M. (2007). Optimization of reactive distillation processes using differential evolution strategies. Asia‐Pacific Journal of Chemical Engineering, 2(4), 322-335.
[20]. Babu, B. V., & Munawar, S. A. (2007). Differential evolution strategies for optimal design of shell-and-tube heat exchangers. Chemical Engineering Science, 62(14), 3720-3739.
[21]. Babu, B. V., & Sastry, K. K. N. (1999). Estimation of heat transfer parameters in a trickle-bed reactor using differential evolution and orthogonal collocation. Computers & Chemical Engineering, 23(3), 327-339.
[22]. Bhaskar, V., Gupta, S. K., & Ray, A. K. (2000). Multiobjective optimization of an industrial wiped‐film pet reactor. AIChE Journal, 46(5), 1046-1058.
[23]. Bhaskar, V., Gupta, S. K., & Ray, A. K. (2001). Multiobjective optimization of an industrial wiped film poly (ethylene terephthalate) reactor: Some further insights. Computers & Chemical Engineering, 25(2-3), 391-407.
[24]. Chiou, J. P., & Wang, F. S. (1999). Hybrid method of evolutionar y algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process. Computers & Chemical Engineering, 23(9), 1277-1291.
[25]. Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., & Price, K. V. (1999). New ideas in Optimization. McGraw-Hill Ltd., UK.
[26]. Dasgupta, D., & Michalewicz, Z. (1997). Evolutionary Algorithms in Engineering Applications Springer, Germany.
[27]. Deb, K. (1996). Optimization for engineering design: Algorithms and examples. Prentice-Hall, India.
[28]. Deb, K. (2001). Multi-objective Optimization using Evolutionary Algorithms. New York: Wiley.
[29]. Deb, K., Mitra, K., Dewri, & R., Majumdar, S. (2004). Towards a better understanding of epoxy polymerization process using multi-objective evolutionary computation. Chemical Engineering Science, 59(20), 4261-4277.
[30]. Fan, H. Y., & Lampinen, J. (2003). A trigonometric mutation operation to differential evolution. Journal of Global Optimization, 27, 105-129.
[31]. Fonseca, C. M., & Fleming, P. J. (1995). An overview of evolutionary algorithms in multi-objective optimization. Evolutionary Computation Journal, 3(1), 1-16.
[32]. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley.
[33]. Gujarathi, A. M., & Babu, B. V. (2009). Optimization of adiabatic styrene reactor: A hybrid multiobjective differential evolution (H-MODE) approach. Industrial & Engineering Chemistry Research, 48(24), 11115-11132.
[34]. Gujarathi, A. M., & Babu, B. V. (2010a). Multiobjective Optimization of Industrial Styrene Reactor: Adiabatic and Pseudo-isothermal Operation. Chemical Engineering Science, 65(6), 2009-2026.
[35]. Gujarathi, A. M., & Babu, B. V. (2010b). Hybrid Multiobjective Differential Evolution (H-MODE) for optimization of Polyethylene Terephthalate (PET) reactor. International Journal of Bio-inspired Computation, 2(3/4), 213-221.
[36]. Gujarathi, A. M., & Babu, B. V. (2011a). Multiobjective optimization of industrial processes using elitist multiobjective differential evolution (Elitist-MODE). Materials and Manufacturing Processes, 26(3), 455-463.
[37]. Gujarathi, A. M., & Babu, B. V. (2011b). Hybrid multiobjective differential evolution for multi-objective optimization of industrial polymeric materials. Computer Methods in Materials Science, 11(3), 463-468.
[38]. Gujarathi, A. M., & Babu, B. V. (2012). Differential evolution strategies for multi-objective optimization. In Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) (pp. 63- 71). Springer, India.
[39]. Gujarathi, A. M., & Babu, B. V. (2013a). Hybrid Strategy of Multi-objective Differential Evolution (H-MODE) for Multi-objective optimization. International Journal of Computational Intelligence Studies, 2(2), 157-185.
[40]. Gujarathi, A. M., & Babu, B. V. (2013b). Multiobjective Optimization of Industrial Naphtha Cracker for Production of Ethylene and Propylene. Materials and Manufacturing Processes, 28(7), 803-810.
[41]. Hawkins, D. S., Allen, D. M., & Stromberg, A. J. (2001). Determining the Number of Components in Mixtures of Linear Models. Computational Statistics & Data Analysis, 38, 15-48.
[42]. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.
[43]. Joshi, R., & Sanderson, A. C. (1999). Minimal Representation Multi-Sensor Fusion using Differential Evolution. IEEE Transactions on Systems, Man and Cybernetics, Part A, 29, 63-76.
[44]. Kirkpatrick, S., Gelatt, C. D., & Vechhi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4568), 671-680.
[45]. Kumar, S., Datta, D., & Babu, B. V. (2010). Experimental data and Theoretical (Chemodel using the Differential Evolution Approach and Linear Solvation Energy Relationship Model) Predictions on Reactive Extraction of Monocarboxylic Acids using Tri-noctylamine. Journal of Chemical & Engineering Data, 55(10), 4290-4300.
[46]. Kumar, S., Datta, D., & Babu, B. V. (2011a). Estimation of Equilibrium Parameters using Differential Evolution in Reactive Extraction of Propionic Acid by Tri-n-Butyl Phosphate. Chemical Engineering and Processing: Process Intensification, 50(7), 614-622.
[47]. Kumar, S., Datta, D., & Babu, B. V. (2011b). Differential Evolution Approach for Reactive Extraction of Propionic Acid using Tri-n-Butyl Phosphate (TBP) in Kerosene and 1-Decanol. Material and Manufacturing Processes, 26(9), pp. 1222-1228.
[48]. Kyprianou, A., Worden, K., & Panet, M. (2001). Identification of Hysteretic Systems using the Differential Evolution Algorithm. Journal of Sound and Vibration, 248(2), 289-314.
[49]. Lampinen, J. (2003). A Bibliography on Differential Evolution. Lappeenranta University of Technology, Finland.
[50]. Laubriet, C., LeCorre, B., & Choi K.Y. (1991). Two-phase model for continuous final stage melt poly-condensation of poly ethylene terephthalate: 1. steady-state analysis. Industrial & Engineering Chemistry Research, 30(1), 2-12.
[51]. Lee, M. H., Han, C., & Chang, K. S. (1999). Dynamic Optimization of a Continuous Polymer Reactor using a Modified Differential Evolution. Industrial & Engineering Chemistry Research, 38(12), 4825-4831.
[52]. Lu, J. C., & Wang, F. S. (2001). Optimization of Low Pressure Chemical Vapour Deposition Reactors Using Hybrid Differential Evolution. Canadian Journal of Chemical Engineering, 79(2), 246-254.
[53]. Martin, H. C. S., & Choi, K. Y. (1991). Two phase model for continuous final stage melt polycondenstaionpoly (ethylene terephthalate): 2. analysis of dynamic behavior. Industrial & Engineering Chemistry Research, 30, 1712-1718.
[54]. Martinez, S. Z., & Coello, C. A. C. (2008). Hybridizing an evolutionary algorithm with mathematical programming technique for multi-objective optimization, In Proceedings of Genetic and Evolutionary Computation Conference.
[55]. Mitra, K., Deb, K., & Gupta, S. K. (1998). Multiobjective dynamic optimization of an industrial nylon 6 semibatch reactor using genetic algorithm. Journal of Applied Polymer Science, 69(1), pp. 69-87.
[56]. Nelder, J. M., & Mead, R. (1965). A simplex method for function minimization. The Computational Journal, 7, 308-313.
[57]. Onwubolu, G. C., & Babu, B. V. (2004). New Optimization Techniques in Engineering. Springer-Verlag, Heidelberg, Germany.
[58]. Poloni, C., Giurgevich A., Onesti, L., & Pediroda, V. (2000). Hybridization of a multi-objective genetic algorithm, a neural network and a classical optimizer for a complex design problem influid dynamics. Computational Methods in Applied Mechanical Engineering, 186, 403-420.
[59]. Price, K., & Storn, R. (1997). Differential Evolution – A Simple Evolution Strategy for Fast Optimization. Dr. Dobb's Journal, 2 (4), 18-24 & 78.
[60]. Rao, S. S. (1991). Optimization Theory and Applications, 2nd Ed. Wiley Eastern: New Delhi.
[61]. Ravindranath, K., & Mashelkar, R. A. (1984). Finishing stages of PET synthesis: a comprehensive model. American Institute of Chemical Engineers Journal, 30(3), 415-422.
[62]. Ravindranath, K., & Mashelkar, R. A. (1986a). Polyethylenete rephthalate -I:chemistry, thermodynamics and transport properties. Chemical Engineering Science, 41(9), 2197-2214.
[63]. Ravindranath, K., & Mashelkar, R. A. (1986b). Polyethylene terephthalate-II: engineering analysis. Chemical Engineering Science, 41(12), 2969-2987.
[64]. Sastry, K. K. N., Behra, L., & Nagrath, I. J. (1999). Differential evolution based fuzzy logic controller for nonlinear process control. Fundamenta Informaticae: Special Issue on Soft Computation, 37(1–2), 121–136.
[65]. Sheth, P. N., & Babu, B. V. (2009). Differential Evolution Approach for obtaining Kinetic Parameters in Non isotheral Pyrolysis of Biomass.Materials and Manufacturing Processes, 24(1), 47-52.
[66]. Storn, R. (1995). Differential evolution design of an IIRfilter with requirements for magnitude and group delay. International Computer Science Institute, TR-95-018.
[67]. Wang, F. S., Su, T. L., & Jang, H. J. (2001). Hybrid Differential Evolution for Problems of Kinetic Parameter Estimation and Dynamic Optimization of an Ethanol Fermentation Process. Industrial & Engineering Chemistry Research, 40(13), 2876-2885.
[68]. Wang, F. S., & Cheng, W. M. (1999). Simultaneous optimization of feeding rate and operation parameters for fed-batch fermentation processes. Biotechnology Progress, 15(5), 949-952.
[69]. Wang, F. S., Jing, C. H., & Tsao, G. T. (1998). Fuzzy-decision- making problems of fuel ethanol production using genetically engineered yeast. Industrial & Engineering Chemistry Research, 37(8), 3434-3443.
[70]. Yee, A. K. Y., Ray, A. K., & Rangiah, G. P. (2003). Multi-objective optimization of industrial styrene reactor. Computers & Chemical Engineering, 27, 111-130.