References
[1]. An, J., Rousson, M., & Xu, C. (2007). G-convergence
approximation to piecewise smooth medical image
segmentation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention
(pp. 495-502). Springer, Berlin, Heidelberg.
[2]. Breast Cancer Stages. (n.d.). In Breastcancer.org.
Retrieved from http://www.breastcancer.org/symptoms/
diagnosis/staging
[3]. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.
P., & Osher, S. (2007). Fast global minimization of the
active contour/snake model. Journal of Mathematical
Imaging and Vision, 28(2), 151-167.
[4]. Bruce, L. M., & Adhami, R. R. (1999). Classifying mammographic mass shapes using the wavelet
transform modulus-maxima method. IEEE Transactions on
Medical Imaging, 18(12), 1170-1177.
[5]. Chan, T. F., & Vese, L. A. (2001). Active contours without
edges. IEEE Transactions on Image Processing, 10(2),
266-277.
[6]. Cheng, H. D., Shan, J., Ju, W., Guo, Y., & Zhang, L.
(2010). Automated breast cancer detection and
classification using ultrasound images: A survey. Pattern
Recognition, 43(1), 299-317.
[7]. Cheng, H. D., Shi, X. J., Min, R., Hu, L. M., Cai, X. P., &
Du, H. N. (2006). Approaches for automated detection
and classification of masses in mammograms. Pattern
Recognition, 39(4), 646-668.
[8]. Cremers, D., Schmidt, F. R., & Barthel, F. (2008). Shape
priors in variational image segmentation: Convexity,
lipschitz continuity and globally optimal solutions. In
Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on (pp. 1-6). IEEE.
[9]. d'Angelo, P., Wöhler, C., & Krüger, L. (2006). Model
Based multi-view Active Contours for Quality Inspection. In
Computer Vision and Graphics (pp. 565-574). Springer,
Dordrecht.
[10]. Durbin, R., Szeliski, R., & Yuille, A. (1989). An analysis
of the elastic net approach to the traveling salesman
problem. Neural Computation, 1(3), 348-358.
[11]. Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical
pattern recognition: A review. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(1), 4-37.
[12]. Kowal, M., Filipczuk, P., Obuchowicz, A., & Korbicz, J.
(2011). Computer-aided diagnosis of breast cancer
using Gaussian mixture cytological image segmentation.
Journal of Medical Informatics & Technologies, 17, 257-
262.
[13]. Kullback, S., & Leibler, R. A. (1951). On information
and sufficiency. The Annals of Mathematical Statistics,
22(1), 79-86.
[14]. Lankton, S., & Tannenbaum, A. (2008). Localizing
region-based active contours. IEEE Transactions on
Image Processing, 17(11), 2029-2039.
[15]. Leventon, M. E., Grimson, W. E. L., & Faugeras, O. (2000). Statistical shape influence in geodesic active
contours. In Computer Vision and Pattern Recognition,
2000. Proceedings. IEEE Conference on (Vol. 1, pp. 316-
323). IEEE.
[16]. Li, C., Kao, C. Y., Gore, J. C., & Ding, Z. (2008).
Minimization of region-scalable fitting energy for image
segmentation. IEEE Transactions on Image Processing,
17(10), 1940-1949.
[17]. Mumford, D., & Shah, J. (1985). Boundary detection
by minimizing functionals. In IEEE Conference on
Computer Vision and Pattern Recognition (Vol. 17, pp.
137-154). IEEE.
[18]. Mumford, D., & Shah, J. (1989). Optimal
approximations by piecewise smooth functions and
associated variational problems. Communications on
Pure and Applied Mathematics, 42(5), 577-685.
[19]. Oliver i Malagelada, A. (2007). Automatic mass
segmentation in mammographic images (Doctoral
Dissertation, Universitat de Girona).
[20]. Pagonis, D. C., & Sidiropoulos, K. (2010). Improving
the classification accuracy of computer aided diagnosis
through multimodality breast imaging. e-Journal of
Science & Technology (e-JST), 2(5), 33-39.
[21]. Patel, B. C., & Sinha, G. R. (2010a). An adaptive km
eans clustering algorithm for breast image
segmentation. International Journal of Computer
Applications, 10(4), 35-38.
[22]. Patel, B. C., & Sinha, G. R. (2010b). Early detection of
breast cancer using Self similar fractal method.
International Journal of Computer Applications, 10(4),
39-43.
[23]. Patel, B. C., & Sinha, G. R. (2010c). Structural analysis
of tissue in contiguous micro-calcifications in mammograms
for breast cancer identification. i-manager's Journal on
Future Engineering and Technology, 6(2), 20-27.
[24]. Patel, B. C., & Sinha, G. R. (2011a). Comparative
performance evaluation of segmentation methods in
breast cancer images. International Journal of Machine
Intelligence, 3(3), 130-133.
[25]. Patel, B. C., & Sinha, G. R. (2011b). Mammographic
image analysis method for early detection of breast cancer. i-manager's Journal on Future Engineering and
Technology, 7(1), 10-16.
[26]. Patel, B. C., & Sinha, G. R. (2012). Energy and Region
based Detection and Segmentation of Breast Cancer
Mammographic Images. International Journal of Image,
Graphics and Signal Processing, 4(6), 44-51.
[27]. Patel, B. C., & Sinha, G. R. (2014a). Efficient
detection of suspected areas in mammographic breast
cancer images. i-manager's Journal on Pattern
Recognition, 1(4), 1-10.
[28]. Patel, B. C., & Sinha, G. R. (2014b). Mammography
feature analysis and mass detection in breast cancer
images. In Electronic Systems, Signal Processing and
Computing Technologies (ICESC), 2014 International
Conference on (pp. 474-478). IEEE.
[29]. Patel, B. C., Sinha, G. R., & Thakur, K. (2011). Early
detection of breast cancer using a modified topological
derivative based method. Int. J. Pure Appl. Sci. Technol,
7(1), 75-80.
[30]. Patel, B. C., Sinha, G. R., & Thakur, K. (2013). Mass
segmentation and Feature extraction of Mammographic
Images of Breast cancer in Computer-aided diagnosis
(CAD) System. CSVTU Journal of Research, 67-74.
[31]. Rangayyan, R. M., Ayres, F. J., & Desautels, J. L.
(2007). A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs. Journal of
the Franklin Institute, 344(3-4), 312-348.
[32]. Sampat, M. P., Markey, M. K., & Bovik, A. C. (2005).
Computer - aided detection and diagnosis in
mammography. Handbook of Image and Video
Processing, 2(1), 1195-1217.
[33]. Shah, J. (1994). Piecewise smooth approximations of
functions. Calculus of Variations and Partial Differential
Equations, 2(3), 315-328.
[34]. Singh, S., & Gupta, P. R. (2011). Breast cancer
detection and classification using neural network.
International Journal of Advanced Engineering Sciences
and Technologies, 6(1), 4-9.
[35]. Sinha G. R., & Patel B. C. (2014). Medical Image
Processing: Concepts and Applications. PHI Learning
Private Limited.
[36]. Sinha, G. R. (2015). Fuzzy based Medical Image
Processing. In Kumar, A. V. S. (Eds.). Fuzzy Export System for
Disease Diagnosis (pp. 45-61). IGI Global Publishers, USA.
[37]. Zhen, L., & Chan, A. K. (2001). An artificial intelligent
algorithm for tumor detection in screening
mammogram. IEEE Transactions on Medical Imaging,
20(7), 559-567.