Experimental and Numerical Analysis of Structures Under Blast Loading – A Review

Mudi Charitha*, P. R. Maiti**, R.Natarajan***
* PG Scholar, Department of Civil Engineering, Jawaharlal Nehru Technological University Anantapur, India.
** Associate Professor, Department of Civil Engineering, Indian Institute of Technology, Varanasi, India.
*** Professor, Department of Civil Engineering, Jawaharlal Nehru Technological University Anantapur, India.
Periodicity:June - August'2018
DOI : https://doi.org/10.26634/jste.7.2.14041

Abstract

The terrorist attacks, threats, accidents imposed protuberant danger conditions and odious aesthetic view of public, commercial structures. Thus the study of dynamic response of engineering structures subjected to blast load becomes an interesting area in engineering research communities. Structures under blast and impact loads usually under go large plastic deformations and consequent failure occurs. In designing of structures, the design process for blast impact resisting structures has become more imperative. In this paper, a comprehensive overview of structural response and its characteristics under blast load on the basis of experimental and numerical methods are succinctly reviewed. The current advances in this research area are focused and illustrated. The concept of blast wave and its critical structural responses are classified on the basis of different materials and safety of the structure. Majorly availed numerical and experimental methods were discussed in a wide range with incisive description. The dynamic parameters, such as impulse velocity, acceleration, and displacement of structure under blast load are delineated on the basis of existing numerical techniques and experimental analysis.

Keywords

Blast Load, Experimental Analysis, Pressure-Time Profile, Numerical Analysis

How to Cite this Article?

Charitha, M., Maiti, P. R, Sashidhar, C. (2018). Experimental and Numerical Analysis of Structures Under Blast Loading – A Review, i-manager's Journal on Structural Engineering, 7(2), 27-36. https://doi.org/10.26634/jste.7.2.14041

References

[1]. Baker, W. E., Cox, P. A., Westine, P. S., Kulesz, J. J., & Strehlow, R. A. (1983). Explosion Hazards and Evaluation. Elsevier Science.
[2]. Boyd, S. D. (2002). Acceleration of a plate subject to explosive blast loading-Trail results. Internal Report DSTOTN- 0270, Dept. of Defence, Australia.
[3]. Buchan, P. A., & Chen, J. F. (2007). Blast resistance of FRP composites and polymer strengthened concrete and masonry structures- A state-of-the-art review. Composites Part B: Engineering, 38(5-6), 509-522.
[4]. CONWEP (1991). Conventional weapons effects programs. Version 2.00. US army Engineer waterways experimental station, Vicksburg, MS, USA.
[5]. Crawford, J. E., Malvar, L. J., Wesevich, J. W., Valancius, J., & Reynolds, A. D. (1997). Retrofit of reinforced concrete structures to resist blast effects. Structural Journal, 94(4), 371-377.
[6]. Crawford, J. E., Malvar, L. J., & Morrill, K. B. (2001). Reinforced concrete column retrofir methods for sesismic and blast protection. American Society of Military Engg Symposium on Compressive Force Protection, Charleston USA.
[7]. Elsanadedy, H. M., Almusallam, T. H., Abbas, H. U. S. A. I. N., Al-Salloum, Y. A., & Alsayed, S. H. (2011). Effect of blast loading on CFRP-Retrofitted RC columns-a numerical study. Latin American Journal of Solids and Structures, 8(1), 55-81.
[8]. Enstock, L. K., & Smith, P. D. (2007). Measurement of impulse from the close-in explosion of doped charges using a pendulum. International Journal of Impact Engineering, 34(3), 487-494.
[9]. Figuli, L., Bedon, C., Zvaková, Z., Jangl, Š., & Kavický, V. (2017). Dynamic analysis of a blast loaded steel structure. Procedia Engineering, 199, 2463-2469.
[10]. Furqan, A., Santosa, S. P., Putra, A. S., Widagdo, D., Gunawan, L., & Arifurrahman, F. (2017). Blast impact analysis of stiffened and curved panel structures. Procedia Engineering, 173, 487-494.
[11]. Gatuingt, F., & Pijaudier-Cabot, G. (2000). Computational modelling of concrete structures subjected to explosion and perforation. Proceeding of Eccomass.
[12]. Gowtham, M. (2015). Analytical Study of Explosion Resistance Scaling on Reinforced Concrete Slab under Free Air-Burst Blast Load, 4 (3), 130-133.
[13]. Hallquist. J. O. (1998). Theoretical manual. Livemore Software Technology Co. CA, USA.
[14]. Hanssen, A. G., Olovsson, L., Børvik, T., & Langseth, M. (2002). Close-range blast loading of aluminium foam panels: A numerical study. In IUTAM Symposium on Mechanical Properties of Cellular Materials (pp. 169-180). Springer, Dordrecht.
[15]. Hy, L., & Hao. H (2016). Reliability analysis of RC slabs under explosive loading. Struct. Safety, 23, 157-178.
[16]. Ibrahim, Y. E., Ismail, M. A., & Nabil, M. (2017). Response of reinforced concrete frame structures under blast loading. Procedia Engineering, 171, 890-898.
[17]. Jacinto, A. C., Ambrosini, R. D., & Danesi, R. F. (2001). Experimental and computational analysis of plates under air blast loading. International Journal of Impact Engineering, 25(10), 927-947.
[18]. Jones, N. (1989). Recent studies on the dynamic plastic behavior of structures. Applied Mechanics Reviews, 42(4), 95-115.
[19]. Kang, K. Y., Choi, K. H., Choi, J. W., Ryu, Y. H., & Lee, J. M. (2017). Explosion induced dynamic responses of blast wall on FPSO topside: Blast loading application methods. International Journal of Naval Architecture and Ocean Engineering, 9(2), 135-148.
[20]. Kong, X., Li, X., Zheng, C., Liu, F., & Wu, W. G. (2017). Similarity considerations for scale-down model versus prototype on impact response of plates under blast loads. International Journal of Impact Engineering, 101, 32-41.
[21]. Langdon, G. S., & Schleyer, G. K. (2003). Inelastic deformation and failure of clamped aluminium plates under pulse pressure loading. International Journal of Impact Engineering, 28(10), 1107-1127.
[22]. Langdon, G. S., Yuen, S. C. K., & Nurick, G. N. (2005). Experimental and numerical studies on the response of quadrangular stiffened plates. Part II: localised blast loading. International Journal of Impact Engineering, 31(1), 85-111.
[23]. Li, J., & Hao, H. (2014). A simplified numerical method for blast induced structural response analysis. International Journal of Protective Structures, 5(3), 323-348.
[24]. Li, J., Hao, H., & Wu, C. (2017). Numerical study of precast segmental column under blast loads. Engineering Structures, 134, 125-137.
[25]. Li, Q. M., & Jones, N. (1999). Shear and adiabatic shear failures in an impulsively loaded fully clamped beam. International Journal of Impact Engineering, 22(6), 589-607.
[26]. Li, X., Wang, Z., Zhu, F., Wu, G., & Zhao, L. (2014). Response of aluminium corrugated sandwich panels under air blast loadings: Experiment and numerical simulation. International Journal of Impact Engineering, 65, 79-88.
[27]. Ling, Q., He, Y., He, Y., & Pang, C. (2017). Dynamic response of multibody structure subjected to blast loading. European Journal of Mechanics-A/Solids, 64, 46-57.
[28]. Lu. B., & Silva, P. F., (2007). Improving the blast resistance capacity of reinforced concrete slabs with innovative composite materials. Composites Part B Engg., 38, 523-534.
[29]. Luccioni, B. M., & Luege, M. (2006). Concrete pavement slab under blast loads. International Journal of Impact Engineering, 32(8), 1248-1266.
[30]. Markose. A., & Lakshmana. C. (2017). Mechanical responses of V shaped plates under blast loading. Thin Walled Struct., 115, 12-20.
[31]. Mendes, S., & Opat, H. (1973). Tearing and shear failures in explosively loaded clamped beams. Exp. Mech., 13, 480-486.
[32]. Mosalam, K. M., & Mosallam, A. S. (2001). Nonlinear transient analysis of reinforced concrete slabs subjected to blast loading and retrofitted with CFRP composites. Composites Part B: Engineering, 32(8), 623-636.
[33]. Neuberger, A., Peles, S., & Rittel, D. (2007). Scaling the response of circular plates subjected to large and closerange spherical explosions. Part II: buried charges. International Journal of Impact Engineering, 34(5), 874- 882.
[34]. Ngo, T., Mendis, P., Gupta, A., & Ramsay, J. (2007). Blast loading and blast effects on structures–an overview. Electronic Journal of Structural Engineering, 7(S1), 76-91.
[35]. Nicolaides, D., Kanellopoulos, A., Savva, P., & Petrou, M. (2015). Experimental field investigation of impact and blast load resistance of Ultra High Performance Fibre Reinforced Cementitious Composites (UHPFRCCs). Construction and Building Materials, 95, 566-574.
[36]. Olmati, P., Petrini, F., Vamvatsikos, D., & Gantes, C. (2016). Simplified fragility-based risk analysis for impulse governed blast loading scenarios. Engineering Structures, 117, 457-469.
[37]. Olmati, P., Vamvatsikos, D., & Stewart, M. G. (2017). Safety factor for structural elements subjected to impulsive blast loads. International Journal of Impact Engineering, 106, 249-258.
[38]. Remennikov, A., & Kaewunruen, S. (2006). Impact resistance of reinforced concrete columns: experimental th studies and design considerations. 19 Australasian Conference on the Mechanics of Structures and Materials (pp. 817-824).
[39]. Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research, 25(7), 1501-1511.
[40]. Ross, C. A., Purcell, M. R., & Jerome, E. L. (1997, April). Blast response of concrete beams and slabs externally reinforced with Fiber Reinforced Plastics (FRP). In Building to Last (pp. 673-677). ASCE.
[41]. Rossi, R., (2001). Ultra-high-performance concretes – a French persepective of approaches used to produce high strength, ductile fibre reinforced concrete. Concrete. Int. J., 46-52.
[42]. Rudrapatna, N. S., Vaziri, R., & Olson, M. D. (2000). Deformation and failure of blast-loaded stiffened plates. International Journal of Impact Engineering, 24(5), 457- 474.
[43]. Shi, Y., & Stewart, M. G. (2015). Spatial reliability analysis of explosive blast load damage to reinforced concrete columns. Structural Safety, 53, 13-25.
[44]. Shi, Y., Hao, H., & Li, Z. X. (2007). Numerical simulation of blast wave interaction with structure columns. Shock Waves, 17(1-2), 113-133.
[45]. Silva, P. F., & Lu, B. (2009). Blast resistance capacity of reinforced concrete slabs. Journal of Structural Engineering, 135(6), 708-716.
[46]. Singh, S. B., Chauhan, A., & Munjal, P. (2017). A parametric study on response of FRP strengthened masonry walls under Blast loading. Asian J. of Civil Engg. (BHRC), 18(14), 593-605.
[47]. Stochino. F., (2016). RC beams under blast loadsreliability and sensitivity analysis. Engg. Failure Analysis, 66, 544- 565.
[48]. Tai, Y. S., Chu, T. L., Hu, H. T., & Wu, J. Y. (2011). Dynamic response of a reinforced concrete slab subjected to air blast load. Theoretical and Applied Fracture Mechanics, 56(3), 140-147.
[49]. Teeling-Smith, R. G., & Nurick, G. N. (1991). The deformation and tearing of thin circular plates subjected to impulsive loads. International Journal of Impact Engineering, 11(1), 77-91.
[50]. Venkatakrishnan, L., Suriyanarayanan, P., & Jagadeesh, G., (2012). Velocity and density field measurements of a micro-explosion. International Symposium on Flow Visualization.
[51]. Verma, S., Choudhury, M., & Saha, P., (2015). Blast resistant design of structures. Int. J. of Research in Engg., 4, 2319-1163.
[52]. Wang, H., Wu, C., Zhang, F., Fang, Q., Xiang, H., Li, P., & Li, J. (2017). Experimental study of large-sized concrete filled steel tube columns under blast load. Construction and Building Materials, 134, 131-141.
[53]. Wen, H. M., & Jones, N. (1996). Low-velocity perforation of punch-impact-loaded metal plates. Journal of Pressure Vessel Technology, 118(2), 181-187.
[54]. Xue, Z., & Hutchinson, J. W. (2003). Preliminary assessment of sandwich plates subject to blast loads. International Journal of Mechanical Sciences, 45(4), 687- 705.
[55]. Yan, B., Liu, F., Song, D., & Jiang, Z. (2015). Numerical study on damage mechanism of RC beams under close-in blast loading. Engineering Failure Analysis, 51, 9-19.
[56]. Yao, S., Zhang, D., Chen, X., Lu, F.Y., and Wang, W., (2016). Experimental and numerical study on dynamic response of reinforced concrete slabs under blast loading. Engg. Failure Analysis, 66, 120-129.
[57]. Yoo, D. Y., & Banthia, N. (2017). Mechanical and structural behavior of ultra-high performance fibre reinforced concrete subjected to impact and blast. Construction and Building Materials, 149, 416-431.
[58]. Yuen, S. C. K., & Nurick, G. N. (2005). Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: subjected to uniform blast load. International Journal of Impact Engineering, 31(1), 55-83.
[59]. Zheng, C., Kong, X. S., Wu, W. G., & Liu, F. (2016). The elastic-plastic dynamic response of stiffened plates under confined blast load. International Journal of Impact Engineering, 95, 141-153.
[60]. Zheng, C., Kong, X., Wu, V.G., Xu,S., and Gaun, Z., (2018). Experimental and numerical study on dynamic response of steel plates subjected to confined blast loading. Int. J. of Impact Engg., 113, 144-160.
[61]. Zhu, F., & Lu, G., (1985). A review of blast and impact of metallic and sandwich structures. EJSE. Loading on Structures.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.