References
[1]. Baker, W. E., Cox, P. A., Westine, P. S., Kulesz, J. J., & Strehlow, R. A. (1983). Explosion Hazards and Evaluation. Elsevier Science.
[2]. Boyd, S. D. (2002). Acceleration of a plate subject to explosive blast loading-Trail results. Internal Report DSTOTN- 0270, Dept. of Defence, Australia.
[3]. Buchan, P. A., & Chen, J. F. (2007). Blast resistance of FRP composites and polymer strengthened concrete and masonry structures- A state-of-the-art review. Composites Part B: Engineering, 38(5-6), 509-522.
[4]. CONWEP (1991). Conventional weapons effects programs. Version 2.00. US army Engineer waterways experimental station, Vicksburg, MS, USA.
[5]. Crawford, J. E., Malvar, L. J., Wesevich, J. W., Valancius, J., & Reynolds, A. D. (1997). Retrofit of reinforced concrete structures to resist blast effects. Structural Journal, 94(4), 371-377.
[6]. Crawford, J. E., Malvar, L. J., & Morrill, K. B. (2001). Reinforced concrete column retrofir methods for sesismic and blast protection. American Society of Military Engg Symposium on Compressive Force Protection, Charleston USA.
[7]. Elsanadedy, H. M., Almusallam, T. H., Abbas, H. U. S. A. I. N., Al-Salloum, Y. A., & Alsayed, S. H. (2011). Effect of blast loading on CFRP-Retrofitted RC columns-a numerical study. Latin American Journal of Solids and Structures, 8(1), 55-81.
[8]. Enstock, L. K., & Smith, P. D. (2007). Measurement of impulse from the close-in explosion of doped charges using a pendulum. International Journal of Impact Engineering, 34(3), 487-494.
[9]. Figuli, L., Bedon, C., Zvaková, Z., Jangl, Š., & Kavický, V. (2017). Dynamic analysis of a blast loaded steel structure. Procedia Engineering, 199, 2463-2469.
[10]. Furqan, A., Santosa, S. P., Putra, A. S., Widagdo, D., Gunawan, L., & Arifurrahman, F. (2017). Blast impact analysis of stiffened and curved panel structures. Procedia Engineering, 173, 487-494.
[11]. Gatuingt, F., & Pijaudier-Cabot, G. (2000). Computational modelling of concrete structures subjected to explosion and perforation. Proceeding of Eccomass.
[12]. Gowtham, M. (2015). Analytical Study of Explosion Resistance Scaling on Reinforced Concrete Slab under Free Air-Burst Blast Load, 4 (3), 130-133.
[13]. Hallquist. J. O. (1998). Theoretical manual. Livemore Software Technology Co. CA, USA.
[14]. Hanssen, A. G., Olovsson, L., Børvik, T., & Langseth, M. (2002). Close-range blast loading of aluminium foam panels: A numerical study. In IUTAM Symposium on Mechanical Properties of Cellular Materials (pp. 169-180). Springer, Dordrecht.
[15]. Hy, L., & Hao. H (2016). Reliability analysis of RC slabs under explosive loading. Struct. Safety, 23, 157-178.
[16]. Ibrahim, Y. E., Ismail, M. A., & Nabil, M. (2017). Response of reinforced concrete frame structures under blast loading. Procedia Engineering, 171, 890-898.
[17]. Jacinto, A. C., Ambrosini, R. D., & Danesi, R. F. (2001). Experimental and computational analysis of plates under air blast loading. International Journal of Impact Engineering, 25(10), 927-947.
[18]. Jones, N. (1989). Recent studies on the dynamic plastic behavior of structures. Applied Mechanics Reviews, 42(4), 95-115.
[19]. Kang, K. Y., Choi, K. H., Choi, J. W., Ryu, Y. H., & Lee, J. M. (2017). Explosion induced dynamic responses of blast wall on FPSO topside: Blast loading application methods. International Journal of Naval Architecture and Ocean Engineering, 9(2), 135-148.
[20]. Kong, X., Li, X., Zheng, C., Liu, F., & Wu, W. G. (2017). Similarity considerations for scale-down model versus prototype on impact response of plates under blast loads. International Journal of Impact Engineering, 101, 32-41.
[21]. Langdon, G. S., & Schleyer, G. K. (2003). Inelastic deformation and failure of clamped aluminium plates under pulse pressure loading. International Journal of Impact Engineering, 28(10), 1107-1127.
[22]. Langdon, G. S., Yuen, S. C. K., & Nurick, G. N. (2005). Experimental and numerical studies on the response of quadrangular stiffened plates. Part II: localised blast loading. International Journal of Impact Engineering, 31(1), 85-111.
[23]. Li, J., & Hao, H. (2014). A simplified numerical method for blast induced structural response analysis. International Journal of Protective Structures, 5(3), 323-348.
[24]. Li, J., Hao, H., & Wu, C. (2017). Numerical study of precast segmental column under blast loads. Engineering Structures, 134, 125-137.
[25]. Li, Q. M., & Jones, N. (1999). Shear and adiabatic shear failures in an impulsively loaded fully clamped beam. International Journal of Impact Engineering, 22(6), 589-607.
[26]. Li, X., Wang, Z., Zhu, F., Wu, G., & Zhao, L. (2014). Response of aluminium corrugated sandwich panels under air blast loadings: Experiment and numerical simulation. International Journal of Impact Engineering, 65, 79-88.
[27]. Ling, Q., He, Y., He, Y., & Pang, C. (2017). Dynamic response of multibody structure subjected to blast loading. European Journal of Mechanics-A/Solids, 64, 46-57.
[28]. Lu. B., & Silva, P. F., (2007). Improving the blast resistance capacity of reinforced concrete slabs with innovative composite materials. Composites Part B Engg., 38, 523-534.
[29]. Luccioni, B. M., & Luege, M. (2006). Concrete pavement slab under blast loads. International Journal of Impact Engineering, 32(8), 1248-1266.
[30]. Markose. A., & Lakshmana. C. (2017). Mechanical responses of V shaped plates under blast loading. Thin Walled Struct., 115, 12-20.
[31]. Mendes, S., & Opat, H. (1973). Tearing and shear failures in explosively loaded clamped beams. Exp. Mech., 13, 480-486.
[32]. Mosalam, K. M., & Mosallam, A. S. (2001). Nonlinear transient analysis of reinforced concrete slabs subjected to blast loading and retrofitted with CFRP composites. Composites Part B: Engineering, 32(8), 623-636.
[33]. Neuberger, A., Peles, S., & Rittel, D. (2007). Scaling the response of circular plates subjected to large and closerange spherical explosions. Part II: buried charges. International Journal of Impact Engineering, 34(5), 874- 882.
[34]. Ngo, T., Mendis, P., Gupta, A., & Ramsay, J. (2007). Blast loading and blast effects on structures–an overview. Electronic Journal of Structural Engineering, 7(S1), 76-91.
[35]. Nicolaides, D., Kanellopoulos, A., Savva, P., & Petrou, M. (2015). Experimental field investigation of impact and blast load resistance of Ultra High Performance Fibre Reinforced Cementitious Composites (UHPFRCCs). Construction and Building Materials, 95, 566-574.
[36]. Olmati, P., Petrini, F., Vamvatsikos, D., & Gantes, C. (2016). Simplified fragility-based risk analysis for impulse governed blast loading scenarios. Engineering Structures, 117, 457-469.
[37]. Olmati, P., Vamvatsikos, D., & Stewart, M. G. (2017). Safety factor for structural elements subjected to impulsive blast loads. International Journal of Impact Engineering, 106, 249-258.
[38]. Remennikov, A., & Kaewunruen, S. (2006). Impact resistance of reinforced concrete columns: experimental th studies and design considerations. 19 Australasian Conference on the Mechanics of Structures and Materials (pp. 817-824).
[39]. Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research, 25(7), 1501-1511.
[40]. Ross, C. A., Purcell, M. R., & Jerome, E. L. (1997, April). Blast response of concrete beams and slabs externally reinforced with Fiber Reinforced Plastics (FRP). In Building to Last (pp. 673-677). ASCE.
[41]. Rossi, R., (2001). Ultra-high-performance concretes – a French persepective of approaches used to produce high strength, ductile fibre reinforced concrete. Concrete. Int. J., 46-52.
[42]. Rudrapatna, N. S., Vaziri, R., & Olson, M. D. (2000). Deformation and failure of blast-loaded stiffened plates. International Journal of Impact Engineering, 24(5), 457- 474.
[43]. Shi, Y., & Stewart, M. G. (2015). Spatial reliability analysis of explosive blast load damage to reinforced concrete columns. Structural Safety, 53, 13-25.
[44]. Shi, Y., Hao, H., & Li, Z. X. (2007). Numerical simulation of blast wave interaction with structure columns. Shock Waves, 17(1-2), 113-133.
[45]. Silva, P. F., & Lu, B. (2009). Blast resistance capacity of reinforced concrete slabs. Journal of Structural Engineering, 135(6), 708-716.
[46]. Singh, S. B., Chauhan, A., & Munjal, P. (2017). A parametric study on response of FRP strengthened masonry walls under Blast loading. Asian J. of Civil Engg. (BHRC), 18(14), 593-605.
[47]. Stochino. F., (2016). RC beams under blast loadsreliability and sensitivity analysis. Engg. Failure Analysis, 66, 544- 565.
[48]. Tai, Y. S., Chu, T. L., Hu, H. T., & Wu, J. Y. (2011). Dynamic response of a reinforced concrete slab subjected to air blast load. Theoretical and Applied Fracture Mechanics, 56(3), 140-147.
[49]. Teeling-Smith, R. G., & Nurick, G. N. (1991). The deformation and tearing of thin circular plates subjected to impulsive loads. International Journal of Impact Engineering, 11(1), 77-91.
[50]. Venkatakrishnan, L., Suriyanarayanan, P., & Jagadeesh, G., (2012). Velocity and density field measurements of a micro-explosion. International Symposium on Flow Visualization.
[51]. Verma, S., Choudhury, M., & Saha, P., (2015). Blast resistant design of structures. Int. J. of Research in Engg., 4, 2319-1163.
[52]. Wang, H., Wu, C., Zhang, F., Fang, Q., Xiang, H., Li, P., & Li, J. (2017). Experimental study of large-sized concrete filled steel tube columns under blast load. Construction and Building Materials, 134, 131-141.
[53]. Wen, H. M., & Jones, N. (1996). Low-velocity perforation of punch-impact-loaded metal plates. Journal of Pressure Vessel Technology, 118(2), 181-187.
[54]. Xue, Z., & Hutchinson, J. W. (2003). Preliminary assessment of sandwich plates subject to blast loads. International Journal of Mechanical Sciences, 45(4), 687- 705.
[55]. Yan, B., Liu, F., Song, D., & Jiang, Z. (2015). Numerical study on damage mechanism of RC beams under close-in blast loading. Engineering Failure Analysis, 51, 9-19.
[56]. Yao, S., Zhang, D., Chen, X., Lu, F.Y., and Wang, W., (2016). Experimental and numerical study on dynamic response of reinforced concrete slabs under blast loading. Engg. Failure Analysis, 66, 120-129.
[57]. Yoo, D. Y., & Banthia, N. (2017). Mechanical and structural behavior of ultra-high performance fibre reinforced concrete subjected to impact and blast. Construction and Building Materials, 149, 416-431.
[58]. Yuen, S. C. K., & Nurick, G. N. (2005). Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: subjected to uniform blast load. International Journal of Impact Engineering, 31(1), 55-83.
[59]. Zheng, C., Kong, X. S., Wu, W. G., & Liu, F. (2016). The elastic-plastic dynamic response of stiffened plates under confined blast load. International Journal of Impact Engineering, 95, 141-153.
[60]. Zheng, C., Kong, X., Wu, V.G., Xu,S., and Gaun, Z., (2018). Experimental and numerical study on dynamic response of steel plates subjected to confined blast loading. Int. J. of Impact Engg., 113, 144-160.
[61]. Zhu, F., & Lu, G., (1985). A review of blast and impact of metallic and sandwich structures. EJSE. Loading on Structures.