References
[1]. Anlas, G., Santare, M. H., & Lambros, J. (2000). Numerical calculation of stress intensity factors in functionally graded materials. International Journal of Fracture, 104(2), 131-143.
[2]. Asemi, K., Akhlaghi, M., & Salehi, M. (2012). Dynamic analysis of thick short length FGM cylinders. Meccanica, 47(6), 1441-1453.
[3]. Asgari, M., & Akhlaghi, M. (2011). Thermo-mechanical analysis of 2D-FGM thick hollow cylinder using graded finite elements. Advances in Structural Engineering, 14(6), 1059-1073.
[4]. Asghari, M., & Ghafoori, E. (2010). A three-dimensional elasticity solution for functionally graded rotating disks. Composite Structures, 92(5), 1092-1099.
[5]. Asghari, M., Rahaeifard, M., Kahrobaiyan, M. H., & Ahmadian, M. T. (2011). The modified couple stress functionally graded Timoshenko beam formulation. Materials & Design, 32(3), 1435-1443.
[6]. Barati, E., Mohandesi, J. A., & Alizadeh, Y. (2010). The effect of notch depth on J-integral and critical fracture load in plates made of functionally graded aluminumsilicone carbide composite with U-notches under bending. Materials & Design, 31(10), 4686-4692.
[7]. Birman, V., & Byrd, L. W. (2007). Modeling and analysis of functionally graded materials and structures. Applied Mechanics Reviews, 60(5), 195-216.
[8]. Bouchafa, A., Benzair, A., Tounsi, A., Draiche, K., & Mechab, I. (2010). Analytical modelling of thermal residual stresses in exponential functionally graded material system. Materials & Design, 31(1), 560-563.
[9]. Choules, B. D., Kokini, K., & Taylor, T. A. (2001). Thermal fracture of ceramic thermal barrier coatings under high heat flux with time-dependent behavior: Part 1. Experimental results. Materials Science and Engineering: A, 299(1-2), 296-304.
[10]. Dolbow J. E., & Gosz, M. (2002). On the computation of mixed mode stress intensity factors in functionally graded materials. Int. J. Solids Struct., 39(9), 2557-2574.
[11]. Farid, M., Zahedinejad, P., & Malekzadeh, P. (2010). Three-dimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method. Materials & Design, 31(1), 2-13.
[12]. Hosseini, S. M., & Shahabian, F. (2010). Reliability of stress field in Al–Al2O3 functionally graded thick hollow cylinder subjected to sudden unloading, considering uncertain mechanical properties. Materials & Design, 31(8), 3748-3760.
[13]. Jabbari, M., Bahtui, A., & Eslami, M. R. (2009). Axisymmetric mechanical and thermal stresses in thick short length FGM cylinders. International Journal of Pressure Vessels and Piping, 86(5), 296-306.
[14]. Jalali, S. K., Naei, M. H., & Poorsolhjouy, A. (2010). Thermal stability analysis of circular functionally graded sandwich plates of variable thickness using pseudo-spectral method. Materials & Design, 31(10), 4755-4763.
[15]. Kim, J. H., & Paulino, G. H. (2002). Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. International Journal for Numerical Methods in Engineering, 53(8), 1903-1935.
[16]. Liu, H., Tao, J., Gautreau, Y., Zhang, P., & Xu, J. (2009). Simulation of thermal stresses in SiC–Al2O3 composite tritium penetration barrier by finite-element analysis. Materials & Design, 30(8), 2785-2790.
[17]. Nie, G. J., Zhong, Z., & Batra, R. C. (2011). Material tailoring for functionally graded hollow cylinders and spheres. Composites Science and Technology, 71(5), 666-673.
[18]. Rangaraj, S., & Kokini, K. (2004). A study of thermal fracture in functionally graded thermal barrier coatings using a cohesive zone model. J. Eng. Mater. Technol., 126(1), 103-115. doi:10.1115/1.1631028.
[19]. Rousseau, C. E., & Tippur, H. V. (2002). Evaluation of crack tip fields and stress intensity factors in functionally graded elastic materials: cracks parallel to elastic gradient. International Journal of Fracture, 114(1), 87- 112.
[20]. Sethuraman, R., Reddy, G. S. S., & Ilango, I. T. (2003). Finite element based evaluation of stress intensity factors for interactive semi-elliptic surface cracks. International Journal of Pressure Vessels and Piping, 80(12), 843-859.
[21]. Taghvaeipour, A., Bonakdar, M., & Ahmadian, M. T. (2012). Application of a new cylindrical element formulation in finite element structural analysis of FGM hollow cylinders. Finite Elements in Analysis and Design, 50, 1-7.
[22]. Yoshimura, S., Lee, J. S., & Yagawa, G. (1997). Automated system for analyzing stress intensity factors of three-dimensional cracks: Its application to analyses of two dissimilar semi-elliptical surface cracks in plate. Journal of Pressure Vessel Technology, 119(1), 18-26.
[23]. Zeng, Z. J., Dai, S. H., & Yang, Y. M. (1993). Analysis of surface cracks using the line-spring boundary element method and the virtual crack extension technique. International Journal of Fracture, 60(2), 157-167.