References
[1]. Bender, C. M., & Orszag, S. A. (1978). Boundary Layer Theory. Advanced Mathematical Methods for Scientists and
Engineers. McGraw-Hill, New York.
[2]. Chakravarthy, P. P., Kumar, S. D., & Rao, R. N. (2015). An exponentially fitted finite difference scheme for a class of
singularly perturbed delay differential equations with large delays. Ain Shams Engineering Journal, 8(4), 663-671.
[3]. Gold, R. R., (1962). Magneto-hydrodynamic pipe flow. Part I. Journal of Fluid Mechanics, 13(4), 505-512.
[4]. Kadalbajoo, M. K., & Reddy, Y. N. (1988). An Approximate Method for Solving a Class of Singular Perturbation Problems.
Journal of Mathematical Analysis and Applications, 133(3), 306-323.
[5]. Kadalbajoo, M. K., & Aggarwal, V. K., (2005). Fitted mesh B-spline collocation method for solving self-adjoint singularly
perturbed boundary value problems. Applied Mathematics and Computation, 161(3), 973-987.
[6]. Kadalbajoo, M. K., & Sharma, K. K., (2006). Parameter-uniform fitted mesh method for singularly perturbed delay
differential equations with layer behavior. Electronic Transactions on Numerical Analysis, 23,180-201.
[7]. Kadalbajoo, M. K., & Arora, P. (2009). B-spline collocation method for the singular-perturbation problem using artificial
viscosity. Computers & Mathematics with Applications, 57(4), 650-663.
[8]. Kadalbajoo, M. K., & Gupta, V. (2010). A brief survey on numerical methods for solving singularly perturbed problems.
Applied Mathematics and Computation, 217(8), 3641-3716.
[9]. Kadalbajoo, M. K., & Reddy, Y. (1989). Asymptotic and numerical analysis of singular perturbation problems: A survey.
Applied Mathematics and Computation, 30(3), 223-259.
[10]. Kevorkian, J., & Cole, J. D. (1981). Perturbation Methods in Applied Mathematics. Journal of Fluid Mechanics, 148,
500-501.
[10]. Kevorkian, J., & Cole, J. D. (1981). Perturbation Methods in Applied Mathematics. Journal of Fluid Mechanics, 148,
500-501.
[12]. Miller, J. J. (Ed.). (2009). Single Perturbation Problems in Chemical Physics: Analytic and Computational Methods (Vol.
256). John Wiley & Sons
[13]. Miller, J. J., O'Riordan, E., & Shishkin, G. I. (2012). Fitted numerical methods for singular perturbation problems: error
estimates in the maximum norm for linear problems in one and two dimensions. World Scientific.
[14]. Nayfeh, A. H. (1979). Perturbation Methods. Wiley, New York.
[15]. O'Malley, R. E. (1974). Introduction to Singular Perturbations. Academic Press, New York.
[16]. O'Malley, R. E. (1991). Singular Perturbation Methods for Ordinary Differential Equations. Springer, New York.
[17]. Reddy, Y. N., & Reddy, K. A. (2002). Numerical integration method for general singularly perturbed two point boundary
value problems. Applied Mathematics and Computation, 133(2-3), 351-373.
[18]. Roos, H. G., Stynes, M., & Tobiska, L. (1996). Numerical Methods for Singularly Perturbed Differential Methods:
Convection-Diffusion and Flow Problems. Springer Verlag Bertin Heidelberg.
[19]. Shanthi, V., Ramanujam, N., & Natesan, S. (2006). Fitted mesh method for singularly perturbed Reaction-convectiondiffusion
problems with boundary and interior layers. Journal of Applied Mathematics and Computing, 22(1-2), 49-65.
[20]. Subburayan, V., & Ramanujam, N. (2012). Asymptotic Initial Value Technique for singularly perturbed convection–diffusion delay problems with boundary and weak interior layers. Applied Mathematics Letters, 25(12), 2272-
2278.