References
[1]. Ahmed, A., & Hannan, S. A. (2012). Data Mining Techniques to find out heart diseases: An overview. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 1(4), 18-23.
[2]. Alpaydin, E. (2014). Introduction to Machine Learning. MIT Press.
[3]. Amin, S. U., Agarwal, K., & Beg, R. (2013, April). Genetic neural network based data mining in prediction of heart disease using risk factors. In Information & Communication Technologies (ICT), 2013 IEEE Conference on (pp. 1227-1231). IEEE.
[4]. Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Moosaei, H., & Yarifard, A. A. (2017). Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Computer Methods and Programs in Biomedicine, 141, 19-26.
[5]. Austin, P. C., Tu, J. V., Ho, J. E., Levy, D., & Lee, D. S. (2013). Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes. Journal of Clinical Epidemiology, 66(4), 398-407.
[6]. Bisaso, K. R., Anguzu, G. T., Karungi, S. A., Kiragga, A., & Castelnuovo, B. (2017). A survey of machine learning applications in HIV clinical research and care. Computers in Biology and Medicine, 91, 366-371.
[7]. Chaurasia, V. (2017). Early prediction of heart diseases using data mining techniques. Carib. J. Sci. Tech., 1,208-217.
[8]. Fujita, H., Acharya, U. R., Sudarshan, V. K., Ghista, D. N., Sree, S. V., Eugene, L. W. J., & Koh, J. E. (2016). Sudden Cardiac Death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Applied Soft Computing, 43, 510-519.
[9]. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157-1182.
[10]. Iftikhar, S., Fatima, K., Rehman, A., Almazyad, A. S., & Saba, T. (2017). An evolution based hybrid approach for heart diseases classification and associated risk factors identification. Biomedical Research, 28(8), 3451-3455.
[11]. Inbarani, H. H., Azar, A. T., & Jothi, G. (2014). Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Computer Methods and Programs in Biomedicine, 113(1), 175-185.
[12]. Jabbar, M.A., Deekshatulu, B. L., & Chandra, P. (2013). Classification of heart disease using k-nearest neighbor and genetic algorithm. Procedia Technology, 10, 85-94.
[13]. Kim, J., Kang, U., & Lee, Y. (2017). Statistics and Deep Belief Network-Based Cardiovascular Risk Prediction. Healthcare Informatics Research, 23(3), 169-175.
[14]. Long, N. C., Meesad, P., & Unger, H. (2015). A highly accurate firefly based algorithm for heart disease prediction. Expert Systems with Applications, 42(21), 8221-8231.
[15]. Machine Learning with MATLAB. (n.d.). In MathWorks. Retrieved from https://in.mathworks.com/solutions/ machine-learning.
[16]. Mahmoodabadi, Z., & Tabrizi, S. S. (2015). A new efficient algorithm based on ICA for diagnosis of Coronary Artery Disease. International Journal of Telemedicine and Clinical Practices, 1(2), 157-173.
[17]. Masethe, H. D., & Masethe, M. A. (2014, October). Prediction of heart disease using classification algorithms. In Proceedings of the World Congress on Engineering and Computer Science (Vol. 2, pp. 22-24).
[18]. Mustaqeem, A., Anwar, S. M., Khan, A. R., & Majid, M. (2017). A statistical analysis based recommender model for heart disease patients. International Journal of Medical Informatics, 108, 134-145.
[19]. Parthiban, L., & Subramanian, R. (2008). Intelligent heart disease prediction system using CANFIS and genetic algorithm. International Journal of Medical and Health Sciences, 1(5), 278-281.
[20]. Patel, S. B., Yadav, P. K., & Shukla, D. D. (2013). Predict the diagnosis of heart disease patients using classification mining techniques. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), 4(2), 61-64.
[21]. Paul, A. K., Shill, P. C., Rabin, M. R. I., & Murase, K. (2017). Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease. Applied Intelligence, 48, 1-18.
[22]. Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507-2517.
[23]. Shouman, M., Turner, T., & Stocker, R. (2011, December). Using decision tree for diagnosing heart disease patients. In Proceedings of the Ninth Australasian Data Mining Conference (Vol.121, pp. 23-30). Australian Computer Society, Inc.
[24]. Shouman, M., Turner, T., & Stocker, R. (2012, March). Using data mining techniques in heart disease diagnosis and treatment. In Electronics, Communications and Computers (JEC-ECC), 2012 Japan-Egypt Conference on (pp. 173-177). IEEE.
[25]. Singh, J., Kamra, A., & Singhra, H. (2016). Prediction th of Heart Diseases using Associative Classification. 5 International Conference on Wireless Networks and Embedded Systems (WECON) (pp. 1-7). IEEE.
[26]. Soni, J., Ansari, U., Sharma, D., & Soni, S. (2011). Predictive data mining for medical diagnosis: An overview of heart disease prediction. International Journal of Computer Applications, 17(8), 43-48.
[27]. Srinivas, K., Rani, B.K., Govardhan, A. (2010a). Applications of Data Mining Techniques in Healthcare and Prediction of Heart Attacks. International Journal on Computer Science and Engineering, 2(2), 250-255.
[28]. Srinivas, K., Rao, G. R., & Govardhan, A. (2010b, August). Analysis of coronary heart disease and prediction of heart attack in coal mining regions using data mining techniques. In Computer Science and th Education (ICCSE), 2010 5 International Conference on (pp. 1344-1349). IEEE.
[29]. Srinivas, K., Rao, G. R., & Govardhan, A. (2014). Rough-Fuzzy classifier: A system to predict the heart disease by blending two different set theories. Arabian Journal for Science and Engineering, 39(4), 2857-2868
[30]. Tayefi, M., Tajfard, M., Saffar, S., Hanachi, P., Amirabadizadeh, A. R., Esmaeily, H., & Mobarhan, M. G. (2017). hs-CRP is strongly associated with Coronary Heart Disease (CHD): A data mining approach using decision tree algorithm. In Computer Methods and Programs in Biomedicine, 141, 105–109.
[31]. Tu, M. C., Shin, D., & Shin, D. (2009, October). Effective diagnosis of heart disease through bagging approach. In Biomedical Engineering and Informatics, nd 2009. BMEI'09. 2 International Conference on (pp. 1-4). IEEE.
[32]. UCI Machine Learning Repository-Heart Disease Dataset. Retrieved from https://archive.ics.uci.edu/ml/ datasets/Heart+ Disease