References
[1]. Alghamdi, R. A., Taileb, M., & Ameen, M. (2014, April).
A new multimodal fusion method based on association
rules mining for image retrieval. In Electrotechnical
th Conference (MELECON), 2014 17 IEEE Mediterranean
(pp. 493-499). IEEE.
[2]. Bonsor, K., & Johnson, R. (2001). How Facial
Recognition Systems Work. In HowStuffWorks.com. Retrieved from https://electronics.howstuffworks.com/
gadgets/high-tech-gadgets/facial-recognition.htm
[3]. Brunelli, R. (2009). Template Matching Techniques in
Computer Vision: Theory and Practice. John Wiley & Sons.
[4]. Chen, L., Xu, D., Tsang, I. W., & Luo, J. (2012). Tagbased
image retrieval improved by augmented features
and group-based refinement. IEEE Transactions on
Multimedia, 14(4), 1057-1067
[5]. Crawford, M. (2011). Facial recognition progress
report. In SPIE Newsroom. Retrieved from http://spie.org/
newsroom/facial-recognition?SSO=1
[6]. Juneja, K., Verma, A., Goel, S., & Goel, S. (2015,
February). A survey on recent image indexing and
retrieval techniques for low-level feature extraction in CBIR
s y s t e m s . I n C o m p u t a t i o n a l I n t e l l i g e n c e &
Communication Technology (CICT), 2015 IEEE
International Conference on (pp. 67-72). IEEE.
[7]. Mukane, S. M., Gengaje, S. R., & Bormane, D. S.
(2014). A novel scale and rotation invariant texture image
retrieval method using fuzzy logic classifier. Computers &
Electrical Engineering, 40(8), 154-162.
[8]. Mukhopadhyay, S., Dash, J. K., & Gupta, R. D. (2013).
Content-based texture image retrieval using fuzzy class
membership. Pattern Recognition Letters, 34(6), 646-654.
[9]. Pontin, M. W. (2007). Better Face-Recognition
Software. In MIT Technology Review. Retrieved from
http://www.technologyreview.com/Infotech/18796/?a=f
[10]. Sudhakar, M. S., & Bagan, K. B. (2014). An effective
biomedical image retrieval framework in a fuzzy feature
space employing Phase Congruency and GeoSOM.
Applied Soft Computing, 22, 492-503.
[11]. Wankhede, V. A., & Mohod, P. S. (2015, April).
Content-based image retrieval from videos using CBIR
and ABIR algorithm. In Communication Technologies
(GCCT), 2015 Global Conference on (pp. 767-771). IEEE.
[12]. Yan, P., & Khan, S. M. (n.d.). 3D Model based Object
Class Detection in An Arbitrary View. Retrieved from
http://vision.eecs.ucf.edu/projects/3D_Model_based_O
bject_Detection/ObjectDetection.html