References
[1]. Abu-Abdeen, M. (2010). Single and double-step stress relaxation and constitutive modeling of viscoelastic behavior of swelled and un-swelled natural rubber loaded with carbon black. Materials & Design, 31(4), 2078-2084.
[2]. Abu-Abdeen, M. (2012). The unusual effect of temperature on stress relaxation and mechanical creep of polycarbonate at low strain and stress levels. Materials & Design, 34, 469-473.
[3]. Angelidi, M., Vassilopoulos, A. P., & Keller, T. (2017). Ductility, recovery and strain rate dependency of an acrylic structural adhesive. Construction and Building Materials, 140, 184-193.
[4]. Cai, W., Chen, W., & Xu, W. (2016). Characterizing the creep of viscoelastic materials by fractal derivative models. International Journal of Non-Linear Mechanics, 87, 58-63.
[5]. Cangialosi, D. (2016). Mechanical Properties of Polymer Glasses: Physical Aging of Polymer Glasses. In Reference Module in Materials Science and Materials Engineering.
[6]. Chai, Y., Lin, C., & Li, Y. (2017). Effects of creep-plastic behavior on stress development in TBCs during cooling. Ceramics International, 43(15), 11627-11634.
[7]. Ginic-Markovic, M., Dutta, N. K., Dimopoulos, M., Choudhury, N. R., & Matisons, J. G. (2000). Viscoelastic behaviour of filled, and unfilled, EPDM elastomer. Thermochimica Acta, 357, 211-216.
[8]. Guo, J., Liu, J., Wang, Z., He, X., Hu, L., Tong, L., & Tang, X. (2017). A thermodynamics viscoelastic constitutive model for shape memory polymers. Journal of Alloys and Compounds, 705, 146-155.
[9]. Jazouli, S., Luo, W., Bremand, F., & Vu-Khanh, T. (2005). Application of time–stress equivalence to nonlinear creep of polycarbonate. Polymer Testing, 24(4), 463-467.
[10]. Jindal, P., Sain, M., & Kumar, N. (2015). Mechanical characterization of PMMA/MWCNT composites under static and dynamic loading conditions. Materials Today: Proceedings, 2(4-5), 1364-1372.
[11]. Jindal, P., Gupta, S. S., & Bansal, S. (2014). Thermal expansion behaviour of PMMA/MWCNT composites. IJRMET, 4(2), 72-75.
[12]. Jones, K. W., & Bush, R. W. (2017). Investigation of residual stress relaxation in cold expanded holes by the slitting method. Engineering Fracture Mechanics, 179, 213-224.
[13]. Jyoti, J., Basu, S., Singh, B. P., & Dhakate, S. R. (2015). Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Composites Part B: Engineering, 83, 58-65.
[14]. Kuan, H. C., Ma, C. C. M., Chang, W. P., Yuen, S. M., Wu, H. H., & Lee, T. M. (2005). Synthesis, thermal, mechanical, and rheological properties of multiwall carbon nano tube/water borne polyurethane nanocomposite. Composites Science and Technology, 65(11-12), 1703-1710.
[15]. Mianehrow, H., & Abbasian, A. (2017). Energy monitoring of plastic injection molding process running with hydraulic injection molding machines. Journal of Cleaner Production, 148, 804-810.
[16]. Ravi, S., Laha, K., Sakthy, S., Mathew, M. D., & Jayakumar, T. (2014). Design of creep machine and creep specimen chamber for carrying out creep tests in flowing liquid sodium. Nuclear Engineering and Design, 267, 1-9.
[17]. Xiong, J., Zheng, Z., Qin, X., Li, M., Li, H., & Wang, X. (2006). The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon, 44(13), 2701-2707.
[18]. Zhao, X., Li, R. K., & Bai, S. L. (2014). Mechanical properties of sisal fiber reinforced high density polyethylene composites: Effect of fiber content, inter facial compatibilization, and manufacturing process. Composites Part A: Applied Science and Manufacturing, 65, 169-174.