2 and luminescent power was 0.0185 W/μm. These were raised by 82.07% and 73.18%, respectively when compared with its standard three layer structure. Moreover, in four and five layer fully vertical OLED, current density increases, but luminescent power diminishes due to its electric field effects.
">Organic material based Light Emitting Diodes (OLEDs) have greatly dominated solid state semiconductor display technology because of their stupendous features and are accepted world-wide as an emerging trend in the field of display devices. These features of OLEDs introduce low fabrication temperature, low cost, low power consumption, high performance, and flexibility in various applications. This paper demonstrates the performance investigation of fully vertical organic materials based multi-layer OLEDs. For the performance analysis, the extensive comparisons have been performed among the standard three, four, and five layer OLED with their fully vertical device structures by using 4, 4’, 4”– Tris [phenyl-(m-tolyl)-amino]-tri-phenylamine (m_MTDATA) organic material. These impacts are illustrated with the help of performance parameters in terms of current density, luminescent power, and electric field. The complete analysis has been performed by using ATLAS Silvaco numerical simulator. It was found that the concept of fully vertical OLED shows best results in low driving voltage, high current, and high power three layer device applications whereas, four and five layer fully vertical OLED shows best results for high current and low power applications. In three layer fully vertical device, at 18 V the maximum current density obtained was 362.34 mA/cm2 and luminescent power was 0.0185 W/μm. These were raised by 82.07% and 73.18%, respectively when compared with its standard three layer structure. Moreover, in four and five layer fully vertical OLED, current density increases, but luminescent power diminishes due to its electric field effects.