References
[1]. Abood, Z. M. (2013). Edges enhancement of medical
color images using add images. IOSR Journal of
Research & Method in Education, 2(4), 52-60.
[2]. Abramoff, M. D., Magelhaes, P. J., & Ram, S. J. (2004).
Image Processing with Image. J. Biophotonics
International, 11(7), 36-42.
[3]. Bauer, S. (2013). Medical image analysis and image
based modeling for brain tumor studies (Doctor
Dissertation, Graduate School for Cellular and Biomedical
Sciences, University of Bern).
[4]. Bezdek, J. C. (1981). Pattern Recognition with Fuzzy
Objective Function Algorithms. Kluwer Academic
Publishers.
[5]. Bradley, J. D., Perez, C. A., Dehdashti, F., & Siegel, B. A.
(2004). Implementing biologic target volumes in
radiation treatment planning for non-small cell lung
cancer. Journal of Nuclear Medicine, 45(1 suppl), 96S-
101S.
[6]. Cong, V., & Linh, H. Q. (2009). 3D Medical Image
Reconstruction. Retrieved from http://www.fas.hcmut.
edu.vn/webhn10/Baocao/PDF/VCong-Imaging.pdf
[7]. El Naqa, I. (2008). Radiotherapy informatics: targeted
control. Enterprise Imaging and Therapeutic Radiology
Management, 18, 39-42.
[8]. El Naqa, I., Yang, D., Apte, A., Khullar, D., Mutic, S.,
Zheng , J .,&D easy,J.O.(2007).Concurrent
multimodality image segmentation by active contours for
radiotherapy treatment planning. Medical Physics,
34(12), 4738-4749.
[9]. Hsu, A. R., Cai, W., Veeravagu, A., Mohamedali, K. A.,
Chen, K., Kim, S., & Chen, X. (2007). Multimodality
molecular imaging of glioblastoma growth inhibition with
vasculature-targeting fusion toxin VEGF121/rGel. Journal
of Nuclear Medicine, 48(3), 445-454.
[10]. Hu, S., Hoffman, E. A., & Reinhardt, J. M. (2001).
Automatic lung segmentation for accurate quantitation
of volumetric X-ray CT images. IEEE Transactions on
Medical Imaging, 20(6), 490-498.
[11]. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data
clustering: A review. ACM Computing Surveys (CSUR),
31(3), 264-323.
[12]. King, A. D. (2007). Multimodality imaging of head
and neck cancer. Cancer Imaging, 7 (Special issue A),
S37.
[13]. Kleut, D., Jovanovic, M., & Reljin, B. D. (2006). 3D
Visualisation of MRI images using MATLAB. Journal of
Automatic Control, 16(1), 1-3.
[14]. Linh, T. D., & Linh, H. Q. (2007). Medical image
registration in Matlab. Retrieved from http://www.fas.
hcmut.edu.vn/webhn10/Baocao/PDF/TDLinh-
MIRegistration.pdf
[15]. McAuliffe, M. J., Lalonde, F. M., McGarry, D.,
Gandler, W., Csaky, K., & Trus, B. L. (2001). Medical image
processing, analysis and visualization in clinical research.
In Computer-Based Medical Systems, 2001. CBMS 2001.
Proceedings. 14th IEEE Symposium on (pp. 381-386). IEEE.
[16]. Milker-Zabel, S., Zabel-du Bois, A., Henze, M., Huber,
P., Schulz-Ertner, D., Hoess, A., ... & Debus, J. (2006).
Improved target volume definition for fractionated
stereotactic radiotherapy in patients with intracranial
meningiomas by correlation of CT, MRI, and [68Ga]-
DOTATOC-PET. International Journal of Radiation
Oncology Biology Physics, 65(1), 222-227.
[17]. Nestle, U., Kremp, S., Schaefer-Schuler, A.,
Sebastian-Welsch, C., Hellwig, D., Rübe, C., & Kirsch, C.
M. (2005). Comparison of different methods for
delineation of 18F-FDG PET–positive tissue for target
volume definition in radiotherapy of patients with
non–small cell lung cancer. Journal of Nuclear Medicine,
46(8), 1342-1348.
[18]. Papademetris, X., Jackowski, M. P., Rajeevan, N.,
DiStasio, M., Okuda, H., Constable, R. T., & Staib, L. H.
(2006). BioImage Suite: An integrated medical image
analysis suite: An update. The Insight Journal, 2006, 209.
[19]. Pham, D. L. (2001). Spatial models for fuzzy
clustering. Computer Vision and Image Understanding,
84(2), 285-297.
[20]. Pham, D. L., Xu, C., & Prince, J. L. (2000). Current
methods in medical image segmentation. Annual
Review of Biomedical Engineering, 2(1), 315-337.
[21]. Rudd, J. H., Myers, K. S., Sanz, J., & Fayad, Z. A.
(2007). Multimodality imaging of atherosclerosis
(magnetic resonance imaging/computed
tomography/positron emission tomography-computed
tomography). Topics in Magnetic Resonance Imaging,
18(5), 379-388.
[22]. Sebbahi, A., Herment, A., De Cesare, A., &
Mousseaux, E. (1997). Multimodality cardiovascular
image segmentation using a deformable contour
model. Computerized Medical Imaging and Graphics,
21(2), 79-89.
[23]. Sherekar, R. M., & Pawar, A. (2014). A Matlab image processing approach for reconstruction of DICOM
images for manufacturing of customized anatomical
implants by using rapid prototyping. American Journal of
Mechanical Engineering and Automation, 1(5), 48-53.
[24]. Smith, W. L., Lewis, C., Bauman, G., Rodrigues, G.,
D'Souza, D., Ash, R., ... & Fenster, A. (2007). Prostate
volume contouring: a 3D analysis of segmentation using
3DTRUS, CT, and MR. International Journal of Radiation
Oncology Biology Physics, 67(4), 1238-1247.
[25]. Toloza, E. M., Harpole, L., & McCrory, D. C. (2003).
Noninvasive staging of non-small cell lung cancer: A
review of the current evidence. Chest, 123(1), 137S-146S.
[26]. Townsend, D. W. (2008). Multimodality imaging of
structure and function. Physics in Medicine and Biology,
53(4), R1-R39. https://doi.org/10.1088/0031-9155/53/
4/R01
[27]. Yoo, T. S., Ackerman, M. J., Lorensen, W. E.,
Schroeder, W., Chalana, V., Aylward, S., ... & Whitaker, R.
(2002). Engineering and algorithm design for an image
processing API: A technical report on ITK- the insight toolkit.
Studies in Health Technology and Informatics, pp. 586-
592.
[28]. Yang, D., Zheng, J., Nofal, A., Deasy, J., & El Naqa, I.
M. (2017). Techniques and software tool for 3D
multimodality medical image segmentation. Journal of
Radiation Oncology Informatics, 1(1), 1-22.
[29]. Yu-qian, Z., Wei-hua, G., Zhen-cheng, C., Jing-tian,
T., & Ling-Yun, L. (2006). Medical images edge detection
based on mathematical morphology. In Engineering in
Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th
Annual International Conference of the (pp. 6492-6495).
IEEE.
[30]. Zheng, J., El Naqa, I., Rowold, F. E., Pilgram, T. K.,
Woodard, P. K., Saffitz, J. E., & Tang, D. (2005).
Quantitative assessment of coronary artery plaque
vulnerability by high resolution magnetic resonance
imaging and computational biomechanics: A pilot study
ex vivo. Magnetic Resonance in Medicine, 54(6), 1360-
1368.