References
[1]. Buyya, R., Vecchiola, C., & Selvi, S. T. (2013).
Mastering Cloud Computing. Morgan Kaufmann, USA.
[2]. Caesar, W. & Buyya, R. (2015). Cloud Data Centers
and Cost Modeling. Morgan Kaufmann, USA.
[3]. Dean, J. & Ghemawat, S. (2008). MapReduce:
simplified data processing on large clusters.
Communications of the ACM, 51(1), 107-113.
[4]. Karau, H., Konwinski, A., Wendell, P., & Zaharia, M.
(2015). Learning Spark: Lightning-Fast Big Data Analysis.
O'Reilly Media, Inc.
[5]. Katarzyna, M. (2006). Recommendation System for
Online Social Network. Blekinge Institute of Technology,
Master's Thesis in Software Engineering, Thesis no: MSE-
2006, 11.
[6]. Liu, X., Datta, A., & Lim, E. P. (Eds.). (2014).
Computational Trust Models and Machine Learning. CRC
Press.
[7]. Nair, S. S. K. & Ganesh, N. (2016). An exploratory study
on big data processing: A case study from a biomedical
informatics. In Big Data and Smart City (ICBDSC), 2016 3
MEC International Conference on (pp. 1-4). IEEE.
[8]. Sadasivam, R. S., Cutrona, L. S., Kinney, L. R., Marlin,
M. B., Mazor, M. K., Lemon, C. S. et al. (2016). Collectiveintelligence
recommender systems: advancing
computer tailoring for health behavior change into the
21 century. Journal of Medical Internet Research, 18(3),
1-13.
[9]. Saravanakumar, M. V., & Hanifa, S. M. (2017).
BIGDATA: Harnessing insights to healthier analytics - A
survey. In Algorithms, Methodology, Models and
Applications in Emerging Technologies (ICAMMAET),
2017 International Conference on (pp. 1-6). IEEE.
[10]. Verma, J. P., Patel, B., & Patel, A. (2015). Big data
analysis: recommendation system with Hadoop
frame work. In Computational Intelligence &
Communication Technology (CICT), 2015 IEEE
International Conference on (pp. 92-97). IEEE.
[11]. Wiesner, M. & Pfeifer, D. (2014). Health
recommender systems: concepts, requirements,
technical basics and challenges. International Journal of
Environmental Research and Public Health, 11(3), 2580-
2607.
[12]. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma., J., Macauley, M. et al. (2012). Resilient distributed
datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9 USENIX
conference on Networked Systems Design and
Implementation (pp. 25-27). USENIX Association.