References
[1]. Abiyev, R. H. (2014). Facial feature extraction
techniques for face recognition. Journal of Computer
Science, 10(12), 2360.
[2]. Al-Allaf, O. N. (2014). Review of face detection
systems based artificial neural networks algorithms. The
International Journal of Mutimedia & its Applications,
6(1), 1-16.
[3]. Asadi, S., Rao, C. D. S., & Saikrishna, V. (2010). A
comparative study of face recognition with principal
component analysis and cross-correlation technique.
International Journal of Computer Applications, 10(8),
17-21.
[4]. Fang, C. (2009). From dynamic time warping (DTW) to
hidden markov model (HMM). University of Cincinnati, 3,
19.
[5]. Ganapathiraju, A., Hamaker, J., & Picone, J. (1998).
Support vector machines for speech recognition. In Fifth
International Conference on Spoken Language
Processing.
[6].Guo, G., Li, S. Z., & Chan, K. (2000). Face recognition
by support vector machines. In Automatic Face and
Gesture Recognition, 2000. Proceedings. Fourth IEEE
International Conference on (pp. 196-201). IEEE.
[7]. Huang, J., Blanz, V., & Heisele, B. (2002). Face
recognition using component-based SVM classification
and morphable models. In Pattern Recognition with
Support Vector Machines (pp. 334-341). Springer, Berlin,
Heidelberg.
[8]. Jain, A. & Harris, H. (2004). Speaker identification
using MFCC and HMM based techniques, University of
Florida.
[9]. Jha, J. & Ragha, L. (2013). Intrusion detection system
using support vector machine. International Journal of
Applied Information Systems (HAIS)-ISSN, 2249-0868. 25- 30
[10]. Karamizadeh, S., Abdullah, S. M., Manaf, A. A.,
Zamani, M., & Hooman, A. (2013). An overview of
principal component analysis. Journal of Signal and
Information Processing, 4(03), 173-175.
[11]. Kumar, S. & Kaur, H. (2012). Face recognition
techniques: Classification and comparisons.
International Journal of Information Technology and
Knowledge Management, 5(2), 361-363.
[12]. Li, J. (2003). An empirical comparison between SVMs
and ANNs for speech recognition. In The First Instructional
Conf. on Machine Learning (Vol. 951, p. 2003).
[13]. Madan, A. & Gupta, D. (2014). Speech Feature
Extraction and Classification: A Comparative Review.
International Journal of computer applications, 90(9).
[14]. Mukkamala, S., Janoski, G., & Sung, A. (2002).
Intrusion detection using neural networks and support
vector machines. In Neural Networks, 2002. IJCNN'02.
Proceedings of the 2002 International Joint Conference
on (Vol. 2, pp. 1702-1707). IEEE.
[15]. Navazi, A. S., Dhevisri, T., & Mazumder, P. (2013).
Face recognition using principal component analysis
and neural networks. March-2013, International Journal
of Computer Networking, Wireless and Mobile
Communications, (3), 245-256.
[16]. Nugrahaeni, R. N. (2016). Comparative Analysis for
Voice Recognition .
[17]. Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W.,
Chang, J., Hoffman, K. et al. (2005). Overview of the face
recognition grand challenge. In Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on (Vol. 1, pp. 947-954). IEEE.
[18]. Salvador, S. & Chan, P. (2007). Toward accurate
dynamic time warping in linear time and space.
Intelligent Data Analysis, 11(5), 561-580.
[19]. Sung, A. H. & Mukkamala, S. (2003). Identifying
important features for intrusion detection using support
vector machines and neural networks. In Applications
and the Internet, 2003. Proceedings. 2003 Symposium
on (pp. 209-216). IEEE.
[20]. Thai, L. H., Hai, T. S., & Thuy, N. T. (2012). Image
classification using support vector machine and artificial
neural network. International Journal of Information
Technology and Computer Science (IJITCS), 4(5), 32-38.
[21]. Turk, M. A. & Pentland, A. P. (1991a). Face
recognition using eigenfaces. In Computer Vision and
Pattern Recognition, 1991. Proceedings CVPR'91., IEEE
Computer Society Conference on (pp. 586-591). IEEE.
[22]. Turk, M. & Pentland, A. (1991b). Eigenfaces for
recognition. Journal of Cognitive Neuroscience, 3(1), 71-86.
[23]. Yee, C. S. & Ahmad, A. M. (2008). Malay language
text-independent speaker verification using NN-MLP
classifier with MFCC. In Electronic Design, 2008. ICED
2008. International Conference on (pp. 1-5). IEEE.