References
[1]. Burr, I. W. (1942). Cumulative frequency functions. The Annals of Mathematical Statistics, 13(2), 215-232.
[2]. Dey, A. K. & Kundu, D. (2009a). Discriminating among the log-normal, weibull, and generalized exponential distributions. IEEE Transactions on Reliability, 58(3), 416-424.
[3]. Dey, A. K. & Kundu, D. (2009b). Discriminating between the log-normal and log-logistic distributions. Communications in Statistics-Theory and Methods, 39(2), 280-292.
[4]. Dey, A. K. & Kundu, D. (2012a). Discriminating between the bivariate generalized exponential and bivariate Weibull distributions. Chilean Journal of Statistics (ChJS), 3(1).
[5]. Dey, A. K. & Kundu, D. (2012b). Discriminating between the Weibull and log-normal distributions for Type-II censored data. Statistics, 46(2), 197-214.
[6]. Dubey, S. D. (1966). Transformations for Estimation of Parameters. Journal of Indian Statistical Association, 4(3 and 4), 109-124.
[7]. Gupta, R. D. & Kundu, D. (2004). Discriminating between gamma and generalized exponential distributions. Journal of Statistical Computation & Simulation, 74(2), 107-121.
[8]. Gupta, R. D. & Kundu, D. (2003a). Closeness of gamma and generalized exponential distribution. Communications in Statistics-Ttheory and Methods, 32(4), 705-721.
[9]. Gupta, R. D. & Kundu, D. (2003b). Discriminating between Weibull and generalized exponential distributions. Computational Statistics & Data Analysis, 43(2), 179-196.
[10]. Gupta, R. D. & Kundu, D. (2006). On the comparison of Fisher information of the Weibull and GE distributions. Journal of Statistical Planning and Inference, 136(9), 3130-3144.
[11]. Gupta, R. D., Kundu, D., & Manglick, A. (2002). Probability of correct selection of gamma versus GE or Weibull versus GE based on likelihood ratio statistic. In Recent Advances in Statistical Methods (pp. 147-156).
[12]. Kantam, R. R. L., Priya, M. C., & Ravikumar, M. S. (2014). Discrimination between linear failure rate distribution and Rayleigh distribution. Journal of Reliability and Statistical Studies, 7, 9-17.
[13]. Kundu, D. (2005). Discriminating between the normal and Laplace distributions. In Balakrishnan, N., Nagaraja, H. N., & Kannan, N. (Eds.) Advances in Ranking and Selection, Multiple Comparisons, and Reliability (PP. 65-78), Birkhauser, Boston.
[14]. Kundu, D. & Manglick, A. (2005). Discriminating between the log-normal and gamma distributions. Journal of the Applied Statistical Sciences, 14, 175-187.
[15]. Kundu, D., & Raqab, M. Z. (2007). Discriminating between the generalized Rayleigh and log-normal distribution. Statistics, 41(6), 505-515.
[16]. Kundu, D., Gupta, R. D., & Manglick, A. (2005). Discriminating between the log-normal and generalized exponential distributions. Journal of Statistical Planning and Inference, 127(1), 213-227.
[17]. Srinivasa Rao, B. & Kantam, R. R. L. (2014). Discriminating between log-logistic and rayleigh distributions. Pakistan Journal of Statistics and Operation Research, 10(1), 1-7.
[18]. Srinivasa Rao, B. & Kantam, R. R. L. (2013). Acceptance sampling plans for percentiles of half logistic distribution. International Journal of Reliability, Quality and Safety Engineering, 20(05), 1350016.
[19]. Srinivasa Rao, G. & Kantam, R. R. L. (2012). Two-stage Estimation In Log-logistic Model. Pakistan Journal of Statistics, 28(3), 331-339.
[20]. Sultan, K. S. (2007). Order statistics from the generalized exponential distribution and applications. Communications in Statistics-Theory and Methods, 36(7), 1409-1418.