References
[1]. Ahmed, S. (2011). Wind Energy: Theory and Practice. PHI Learning Pvt. Ltd.
[2]. Ajao, K. R. & Mahamood, M. R. (2009). Wind energy conversion system: The past, the present, and the prospect. Journal of American Science, 5(6), 17-22.
[3]. Alnasir, Z. & Kazerani, M. (2013). An analytical literature review of stand-alone wind energy conversion systems from generator viewpoint. Renewable and Sustainable Energy Reviews, 28, 597-615.
[4]. Argatov, I. & Shafranov, V. (2016). Economic assessment of small-scale kite wind generators. Renewable Energy, 89, 125-134.
[5]. Bai, C.-J. & Wang, W.-C. (2016). Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs). In Renewable and Sustainable Energy Reviews, 63, 506–519.
[6]. Bingham, R., Agelin-Chaab, M., & Rosen, M. (2016). Feasibility of a Hybrid Solar and Wind Power System for an Island Community in the Bahamas. International Journal of Renewable Energy Research (IJRER), 6(3), 951-963.
[7]. Bortolotti, P., Bottasso, C. L., & Croce, A. (2016). Combined preliminary-detailed design of wind turbines. Wind Energy Science, 1(1), 71-88.
[8]. Branlard, E. S. P. (2015). Analysis of Wind Turbine Aerodynamics and Aeroelasticity using Vortex-based Methods (Doctoral dissertation, DTU Wind Energy).
[9]. Classic Fleet. (2017). Classic fleet S88-2.1 MW, available at:http://www.suzlon.com/products/classicfeet, accessed on 28th Feb'2017.
[10]. de Freitas, T. R., Menegáz, P. J., & Simonetti, D. S. (2016). Rectifier topologies for permanent magnet synchronous generator on wind energy conversion systems: A review. Renewable and Sustainable Energy Reviews, 54, 1334-1344.
[11]. Earnest, J. & Wizelius, T. (2011). Wind Power Plants and Project Development. PHI Learning.
[12]. Eboibi, O., Danao, L. A. M., & Howell, R. J. (2016). Experimental investigation of the influence of solidity on the performance and flow field aerodynamics of vertical axis wind turbines at low Reynolds numbers. Renewable Energy, 92, 474-483.
[13]. El-Askary, W. A., Sakr, I. M., AbdelSalam, A. M., & Abuhegazy, M. R. (2017). Modeling of wind turbine wakes under thermally-stratified atmospheric boundary layer. Journal of Wind Engineering and Industrial Aerodynamics, 160, 1-15.
[14]. Fakorede, O., Feger, Z., Ibrahim, H., Ilinca, A., Perron, J., & Masson, C. (2016). Ice protection systems for wind turbines in cold climate: Characteristics, comparisons and analysis. Renewable and Sustainable Energy Reviews, 65, 662-675.
[15]. Gantasala, S., Luneno, J. C., & Aidanpää, J. O. (2016). Influence of icing on the modal behavior of wind turbine blades. Energies, 9(11), 862.
[16]. Global Wind Energy Council (GWEC). (2017). Global wind statistics 2016.
[17]. Hansen, L. H., Helle, L., Blaabjerg, F., Ritchie, E., Munk-Nielsen, S., Bindner, H. W. et al. (2001). Conceptual Survey of Generators and Power Electronics for Wind Turbines.
[18]. Hansen, M. O. L. (2008). 'Aerodynamics of wind turbines', Earthscan, USA, UK, 2008.
[19]. Jeon, M., Lee, S., & Lee, S. (2014). Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method. Renewable Energy, 65, 207-212.
[20]. Ji, H. S., Baek, J. H., Mieremet, R., & Kim, K. C. The Aerodynamic Performance Study on Small Wind Turbine with 500W Class through Wind Tunnel Experiments.
[21]. Kaldellis, J. K., & Zafirakis, D. (2011). The wind energy (r) evolution: A short review of a long history. Renewable Energy, 36(7), 1887-1901.
[22]. Khan, M. F. (2015). Modeling and Control of Multiphase Induction Generator for Wind Energy Applications (Doctoral Dissertation, Aligarh Muslim University, India).
[23]. Khan, M. F., & Khan, M. R. (2013). Wind power generation in India: evolution, trends and prospects. International Journal of Renewable Energy Development, 2(3), 175-186.
[24]. Khan, M. F., & Khan, M. R. (2016). Analysis of voltage build-up and speed disturbance ride through capability of a self-excited induction generator for renewable energy application. International Journal of Power and Energy Conversion, 7(2), 157-177.
[25]. Khan, M. F., Khan, M. R., & Iqbal, A. (2017). Modeling, implementation and analysis of a high (six) phase self excited induction generator. Journal of Electrical Systems and Information Technology.
[26]. Lebsir, A., Bentounsi, A., Benbouzid, M., & Mangel, H. (2015). Electric generators fitted to wind turbine systems: An up-to-date comparative study. Journal of Electrical Systems, 11(3), 281-295.
[27]. Levi, E. (2016). Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines. IEEE Transactions on Industrial Electronics, 63(1), 433-448.
[28]. Li, H., & Chen, Z. (2008). Overview of different wind generator systems and their comparisons. IET Renewable Power Generation, 2(2), 123-138.
[29]. Mansouri, M. M., Nayeripour, M., & Negnevitsky, M. (2016). Internal electrical protection of wind turbine with doubly fed induction generator. Renewable and Sustainable Energy Reviews, 55, 840-855.
[30]. Murthy, S. S., (2016). "Renewable energy generators and control". in Rashid, M. H. (Eds.). Electric Renewable Energy Systems. Academic Press, Boston.
[31]. Okulov, V., & van Kuik, G. A. (2009). The Betz- Joukowsky limit for the maximum power coefficient of wind turbines. International Scientific Journal for Alternative Energy and Ecology, (9), 106-111.
[32]. Pao, L. Y., & Johnson, K. E. (2009, June). A tutorial on the dynamics and control of wind turbines and wind farms. In American Control Conference, 2009. ACC'09. (pp. 2076-2089). IEEE.
[33]. Price, T. J. (2005). James Blyth—Britain's first modern wind power pioneer. Wind engineering, 29(3), 191-200.
[34]. Ragheb, M., & Ragheb, A. M. (2011). Wind turbines theory-the betz equation and optimal rotor tip speed ratio. In Fundamental and advanced topics in wind power. InTech.
[35]. Schubel, P. J., & Crossley, R. J. (2012). Wind turbine blade design. Energies, 5(9), 3425-3449.
[36]. Serrano-González, J., & Lacal-Arántegui, R. (2016). Technological evolution of onshore wind turbines—a market-based analysis. Wind Energy, 19(12), 2171-2187.
[37]. Seyoum, D. (1977). The dynamic analysis and control of a self-excited induction generator driven by a wind turbine (Doctoral Dissertation, University of New South Wales, Australia).
[38]. Stotsky, A., Egardt, B., & Carlson, O. (2013, June). Control of wind turbines: A tutorial on proactive perspectives. In American Control Conference (ACC), 2013 (pp. 3429-3436). IEEE.
[39]. Tang, X., Huang, X., Peng, R., & Liu, X. (2015). A direct approach of design optimization for small horizontal axis wind turbine blades. Procedia CIRP, 36, 12- 16.
[40]. Ten Hoeve, J. E., & Jacobson, M. Z. (2012). Worldwide health effects of the Fukushima Daiichi nuclear accident. Energy & Environmental Science, 5(9), 8743- 8757.
[41]. Thomsen, B., Guerrero, J. M., & Thøgersen, P. B. (2014). Faroe islands wind-powered space heating microgrid using self-excited 220-kw induction generator. IEEE Transactions on Sustainable Energy, 5(4), 1361-1366.
[42]. United Nations (UN) (2016) Sustainable development goals: 2030 agenda for ustainable development.
[43]. Wang, L., Liu, X., & Kolios, A. (2016). State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling. Renewable and Sustainable Energy Reviews, 64, 195-210.
[44]. Xie, S., & Archer, C. (2015). Self-similarity and turbulence characteristics of wind turbine wakes via largeeddy simulation. Wind Energy, 18(10), 1815-1838.
[45]. Zaharia, A. A. L., Brisset, S., & Radulescu, M. M. (2016, September). Modeling approaches to brushless DC permanent-magnet generator for use in micro-wind turbine applications. In Electrical Machines (ICEM), 2016 XXII International Conference on (pp. 445-451). IEEE.