References
[1]. Agrawal, R., Ghosh, S., Imielinski, T., Iyer, B., & Swami, A. (1992, August). An interval classifier for database mining applications. In Proc. of the VLDB Conference (pp. 560-573).
[2]. Agrawal, R., Imieliński, T., & Swami, A. (1993, June). Mining association rules between sets of items in large databases. In ACM Sigmod Record (Vol. 22, No. 2, pp. 207-216). ACM.
[3]. Bachem, O., Lucic, M., Hassani, S. H., & Krause, A. (2017, July). Uniform deviation bounds for k-means clustering. In International Conference on Machine Learning (pp. 283-291).
[4]. Bradley, P. S., Bennett, K. P., & Demiriz, A. (2000). Constrained k-means clustering. Microsoft Research, Redmond, 1-8.
[5]. Brodinová, Š., Zaharieva, M., Filzmoser, P., Ortner, T., & Breiteneder, C. (2017). Clustering of imbalanced high-dimensional media data. Advances in Data Analysis and Classification, 1-24.
[6]. Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Special issue on learning from imbalanced data sets. ACM Sigkdd Explorations Newsletter, 6(1), 1-6.
[7]. Deosarkar, B. P., Yadav, N. S., & Yadav, R. P. (2009, December). A particle swarm approach for uniform cluster distribution in data centric wireless sensor networks. In Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on (pp. 766-771). IEEE.
[8]. Gates, A. J. & Ahn, Y. Y. (2017). The impact of random models on clustering similarity. The Journal of Machine Learning Research, 18(1), 3049-3076.
[9]. Han, J., Cai, Y., & Cercone, N. (1992, August). Knowledge discovery in databases: An attribute-oriented approach. In VLDB (Vol. 92, pp. 24-27).
[10]. Haut, J. M., Paoletti, M., Plaza, J., & Plaza, A. (2017). Cloud implementation of the K-means algorithm for hyperspectral image analysis. The Journal of Supercomputing, 73(1), 514-529.
[11]. Iwasaki, Y., Kusne, A. G., & Takeuchi, I. (2017). Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries. NPJ Computational Materials, 3(1), 4.
[12]. Japkowicz, N. (2000, June). The class imbalance problem: Significance and strategies. In Proc. of the Int'l Conf. on Artificial Intelligence (pp.111-117).
[13]. Japkowicz, N. (2003, August). Class imbalances: are we focusing on the right issue. In Workshop on Learning from Imbalanced Data Sets II (Vol. 1723, p. 63).
[14]. Jo, T. & Japkowicz, N. (2004). Class imbalances versus small disjuncts. ACM SIGKDD Explorations Newsletter, 6(1), 40-49.
[15]. Kakushadze, Z. & Yu, W. (2017). *K-means and cluster models for cancer signatures. Biomolecular Detection and Quantification, 13, 7-31.
[16]. Keim, D. A., Kriegel, H., & Seidl, T. (1994, February). Supporting data mining of large databases by visual feedback queries. In Data Engineering, 1994. Proceedings 10th International Conference (pp. 302- 313). IEEE.
[17]. LaRiviere, J., Wichman, C. J., & Cunningham, B. (2017). Using k-means clustering to estimate heterogeneous treatment effects: An application to water infrastructure failure.
[18]. Liu, Y., Li, Z., Xiong, H., Gao, X., & Wu, J. (2010, December). Understanding of internal clustering validation measures. In Data Mining (ICDM), 2010 IEEE 10th International Conference on (pp. 911-916). IEEE.
[19]. Lu, W., Han, J., & Ooi, B. C. (1993, June). Discovery of general knowledge in large spatial databases. In Proc. Far East Workshop on Geographic Information Systems, Singapore (pp. 275-289).
[20]. Newman, A. A. D. (2007). UCI Repository of Machine Learning Database (School of Information and Computer Science, Irvine, CA: Univ. of California).
[21]. Piateski, G. & Frawley, W. (1991). Knowledge Discovery in Databases. MIT Press.
[22]. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
[23]. Suzdaleva, E., Nagy, I., Pecherková, P., & Likhonina, R. (2017). Initialization of Recursive Mixture-based Clustering with Uniform Components. In 14th International Conference on Informatics in Control, Automation and Robotics (pp. 449-458). 10.5220/0006417104490458.
[24]. Weiss, G. M. (2004). Mining with rarity: a unifying framework. ACM SIGKDD Explorations Newsletter, 6(1), 7- 19.
[25]. Wu, J., Brubaker, S. C., Mullin, M. D., & Rehg, J. M. (2008). Fast asymmetric learning for cascade face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(3), 369-382.
[26]. Wu, J., Chen, J., Xiong, H., & Xie, M. (2009). External validation measures for K-means clustering: A data distribution perspective. Expert Systems with Applications, 36(3), 6050-6061.
[27]. Wu, J., Liu, H., Xiong, H., Cao, J., & Chen, J. (2015). K-means- based consensus clustering: A unified view. IEEE Transactions on Knowledge and Data Engineering, 27(1), 155-169.
[28]. Xie, C. (2017). Increase the Performance of K-Means Clustering Algorithm using Apache Spark. International Journal of Internet of Things and its Applications, 1, 13-28.
[29]. Xiong, H., Steinbach, M., Ruslim, A., & Kumar, V. (2009). Characterizing pattern preserving clustering. Knowledge and Information Systems, 19(3), 311-336.
[30]. Zhou, K. & Yang, S. (2016). Exploring the uniform effect of FCM clustering: A data distribution perspective. Knowledge-Based Systems, 96, 76-83.