References
[1]. Bareja, M. N. & Modi, C. K. (2012, May). An effective iterative back projection based single image super resolution approach. In Communication Systems and Network Technologies (CSNT), 2012 International Conference on (pp. 95-99). IEEE.
[2]. Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295-307.
[3]. Ducournau, A., & Fablet, R. (2016, December). Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived SST data. In Pattern Recognition in Remote Sensing (PRRS), 2016 9th IAPR Workshop on (pp. 1- 6). IEEE.
[4]. Freeman, W. T., Jones, T. R., & Pasztor, E. C. (2002). Example-based super-resolution. IEEE Computer Graphics and Applications, 22(2), 56-65.
[5]. Huang, J. B., Singh, A., & Ahuja, N. (2015). Single image super-resolution from transformed self-exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5197-5206).
[6]. Huang, B., Wang, W., Bates, M., & Zhuang, X. (2008). Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319(5864), 810-813.
[7]. Irani, M. & Peleg, S. (1991). Improving resolution by image registration. CVGIP: Graphical Models and Image Processing, 53(3), 231-239.
[8]. Iyanda, C. A., Yaakob, S. N. B., & Nawir, M. (2016, August). Uniqueness of iterative back projection in super resolution techniques. In Electronic Design (ICED), 2016 3rd International Conference on (pp. 501-506). IEEE.
[9]. Jia, K., Wang, X., & Tang, X. (2013). Image transformation based on learning dictionaries across image spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(2), 367-380.
[10]. Kim, J., Kwon Lee, J., & Mu Lee, K. (2016). Deeplyrecursive convolutional network for image superresolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1637- 1645).
[11]. Li, X., Zhu, M., Cui, Z., & Zhu, X. (2015, August). A super-resolution algorithm based on adaptive sparse representation. In Fuzzy Systems and Knowledge Discovery (FSKD), 2015 12th International Conference on (pp. 1834-1838). IEEE.
[12]. Liu, D., Wang, Z., Nasrabadi, N., & Huang, T. (2016, November). Learning a Mixture of Deep Networks for Single Image Super-Resolution. In Asian Conference on Computer Vision (pp. 145-156). Springer, Cham.
[13]. Liu, D., Wang, Z., Wen, B., Yang, J., Han, W., & Huang, T. S. (2016). Robust single image super-resolution via deep networks with sparse prior. IEEE Transactions on Image Processing, 25(7), 3194-3207.
[14]. Moustafa, M., Ebeid, H. M., Helmy, A., Nazamy, T. M., & Tolba, M. F. (2015, December). Super-resolution: Sparse dictionary design method using quantitative comparison. In Intelligent Computing and Information Systems (ICICIS), 2015 IEEE Seventh International Conference on (pp. 383- 389). IEEE.
[15]. Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1520-1528).
[16]. Panda, S. S., Prasad, M. S. R., & Jena, G. (2011). POCS based super-resolution image reconstruction using an adaptive regularization parameter. arXiv preprint arXiv:1112.1484. 8(5).
[17]. Park, S. C., Park, M. K., & Kang, M. G. (2003). Superresolution image reconstruction: a technical overview. IEEE Signal Processing Magazine, 20(3), 21-36.
[18]. Rasti, P., Demirel, H., & Anbarjafari, G. (2013, September). Iterative back projection based image resolution enhancement. In Machine Vision and Image Processing (MVIP), 2013 8th Iranian Conference on (pp. 237-240). IEEE.
[19]. Schulter, S., Leistner, C., & Bischof, H. (2015). Fast and accurate image upscaling with super-resolution forests. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3791-3799).
[20]. Shoji, H. & Gohshi, S. (2015, November). Limitations of learning-based Super-Resolution. In Intelligent Signal Processing and Communication Systems (ISPACS), 2015 International Symposium on (pp. 646-651). IEEE.
[21]. Song, H., He, X., Chen, W., & Sun, Y. (2010, June). An improved iterative back-projection algorithm for video super-resolution reconstruction. In Photonics and Optoelectronic (SOPO), 2010 Symposium on (pp. 1-4). IEEE.
[22]. Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In AAAI (pp. 4278- 4284).
[23]. Tang, Z., Deng, M., Xiao, C., & Yu, J. (2011, August). Projection onto convex sets super-resolution image reconstruction based on wavelet bi-cubic interpolation. In Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011 International Conference on (Vol. 17(2), pp. 351-354). IEEE.
[24]. Vandewalle, P., Süsstrunk, S., & Vetterli, M. (2006). A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP Journal on Applied Signal Processing, 233-233.
[25]. Yang, J., Wang, Z., Lin, Z., Cohen, S., & Huang, T. (2012). Coupled dictionary training for image superresolution. IEEE Transactions on Image Processing, 21(8), 3467-3478.
[26]. Yang, J., Wright, J., Huang, T. S., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 19(11), 2861-2873.
[27]. Zeng, K., Yu, J., Wang, R., Li, C., & Tao, D. (2017). Coupled deep autoencoder for single image super-resolution. IEEE Transactions on Cybernetics, 47(1), 27-37.